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List Interest: Simply Packing Interests Dramatically Reduces
Router Workload in Content-Centric Networking∗
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SUMMARY Content-centric networking (CCN) is an emerging net-
working architecture that is being actively investigated in both the research
and industrial communities. In the latest version of CCN, a large number
of interests have to be issued when large content is retrieved. Since CCN
routers have to search several tables for each incoming interest, this could
cause a serious problem of router workload. In order to solve this problem,
this paper introduces a novel strategy of “grouping” multiple interests with
common information and “packing” them to a special interest called the
list interest. Our list interest is designed to co-operate with the manifest of
CCN as its dual. This paper demonstrates that by skipping and terminating
several search steps using the common information in the list interest, the
router can search its tables for the list interest-based request with dramati-
cally smaller complexity than the case of the standard interest-based request.
Furthermore, we also consider the deployment of list interests and design a
novel TCP-like congestion control method for list interests to employ them
just like standard interests.
key words: content-centric networking, CCNx 1.0, interest aggregation,
list interest, manifest

1. Introduction

Information-centric networking architectures (ICNs) [7],
[11] are quickly becoming an attractive alternative to the
current host-to-host Internet design in both the research and
industrial communities. Several novel networking architec-
tures [1]–[5], [13], [14], [22], [23] have recently been pro-
posed as instances of the ICN. The most common and funda-
mental features in these ICN instances are: (1) interest-based
content retrieval, (2) content oriented naming and routing at
the network layer, and (3) in-network caching. Features (1)
and (2) imply that users acquire content from the network via
explicit queries for uniquely named content, rather than by
establishing point-to-point connections between endpoints.
In-network caching permits a router to cache any content for
predetermined lengths of time such that subsequent requests
for the same content can be satisfied from the cache, rather
than by forwarding the interest upstream. These architectural
features enable many foreseeable benefits, such as improved
performance [19] and lower network cost [24].

Content-centric networking (CCN) [1], [13], [22] is one
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of the ICN instances that are being actively investigated. The
CCN communication is based on named data objects and
driven by content clients (called consumers); A consumer
requests a named data object via an interest packet, then
any network node that has the requested object satisfies the
interest by responding with the named data object called
content object packet. When a router receives an interest,
it first looks up the interest-specifying name in its cache
(called the content store (CS)) by a certain matching-rule.
One interest basically matches only one content object. If
a router receiving the interest does not have the requested
content object, it then looks up the name again in the pending
interest table (PIT) that is the stack of unsatisfied interests
at the router. If the interest is not found even in the PIT, the
router simply forwards the interest upstream according to
the routing information in the forwarding information base
(FIB).

In the early stage of ICN research, most of CCN proto-
type software and specifications had been implemented and
designed as overlay ones as the proof-of-concept. Currently,
in order to maximize the CCN benefit in the real world and
eliminate the overhead for the overlaid implementation, re-
searchers are actively investigating how to realize the concept
of CCN as a native L3 protocol. The newest versions of CCN
(CCNx [1] and NDN [3]†) is designed so as to be used as
an L3 protocol over Ethernet, i.e., an alternative to the In-
ternet Protocol (IP). In the CCN as an L3 protocol, the size
of content objects should be less than the maximum trans-
mission unit (MTU) of the L2 protocol, say 1500 bytes over
Ethernet, in order to avoid the message fragmentation. This
could cause a serious problem, especially in cases where a
large content, e.g., video, audio, etc., is conveyed over CCN
by being split into a large number of small content objects.
In such a case, the consumer has to issue the same number
of interests as the content objects, and routers may suffer
from the heavy computational workload to look up a large
number of names of incoming interests in the search space
of FIB/PIT/CS entries.

The aim of this paper is to provide a solution to the
problem of router workload in the CCN stated above. To
this end, we propose a novel strategy of “grouping” multiple
interests with common information and “packing” them into
a special interest called the list interest. The key idea of
our list interest is to skip and terminate FIB/PIT/CS look-
up operations for multiple interests that are forwarded to

†They branched off from the original CCN project in 2013.
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the same destination by packing them using the common
information. Our analysis in this paper clarifies that the
skip and termination using list interests dramatically reduces
the router workload, and hence this could be essential for
the future deployment of the CCN. The list interest is also
designed to be generated directly from the manifest [22] that
is a new network message introduced in CCNx [1], and it
can be, in other words, viewed as a dual of the manifest since
both are structured as catalogs of names. We also consider
and discuss the deployment of list interests, and introduce
a novel congestion control strategy to control the flow for
the list interest based on the TCP-like congestion window.
This shows a clear direction to employ list interests just like
standard interests.

We should note that the earlier version of this paper [16]
proposed only a method for skipping FIB searches. In ad-
dition to skipping FIB searches, this paper newly introduces
novel methods to terminate CS and PIT searches by list in-
terests. Also, note that in this paper, we shall present the
design and description of list interests in the framework of
CCNx, especially its latest version called CCNx 1.0 [1], [22].
Although our presentation in this paper is tailored towards
CCNx 1.0, we note that our concept of list interests is com-
patible with any CCN realizations, e.g., NDN [3].

The rest of this paper is organized as follows. Section 2
briefly introduces CCNx 1.0, and summarizes existing stud-
ies related to our work. Section 3 proposes the list interest
and describes how to process it at CCN routers. Section 4
shows that the router workload in CCN can be dramatically
reduced by introducing the list interest. Section 5 discusses
the congestion control mechanism for the list interests. Sec-
tion 6 finally provides our concluding remarks.

2. Preliminaries

This section first presents a brief introduction of the CCNx
1.0 [13], [22] and then describes its new network message
called the manifest. Next, we introduce existing studies of
the aggregation of multiple interests, which is related to our
work.

2.1 Overview of CCNx 1.0

Content-centric networking (CCN) [13], [22] is a future net-
working architecture, and CCNx 1.0 [1], [22] is the latest pro-
tocol design of CCN. There are two basic parties in CCN: (1)
content publishers and (2) content consumers. For the sake
of simplicity, we may refer to these parties as publishers and
consumers, respectively. A publisher creates named network
objects (called content objects) with an associated crypto-
graphic signature from any type of content, and publishes
them by name over the network. A consumer issues request
messages (called interests) by publisher-given name, and re-
trieves content objects that have exactly the same names in
the requests. This fundamental rule of matching between
names and content objects is called the exact-match. CCNx
1.0 allows interest messages to carry additional restrictions

Fig. 1 CCN interest/content object forwarding process (This figure was
originally given in [25]).

that are used to determine which content objects may satisfy
(match) the interests [17]. In particular, the hash restriction
of a content object specified in an interest only allows the
network to return the content object whose cryptographic
hash exactly equals the indicated value.

CCN routers in the network are intermediate nodes that
forward interests from consumers and content objects from
publishers. They are composed of three primary elements:
(1) a forwarding information base (FIB), (2) a pending inter-
est table (PIT) and (3) a content store (CS). The FIB is used to
route incoming interests to the appropriate output interface
towards the desired content publisher. Much like traditional
IP routing tables, the FIB is populated using standard rout-
ing protocols or static routes and matches interest names to
FIB entries using the longest-prefix-match. The PIT serves
as a cache of the interest state such that content objects that
satisfy interests may follow the reverse interest path back to
the consumer. The CS is a cache of content objects that
have been processed in case they are re-requested. When an
interest comes to a router, it searches its CS for the name
in the interest prior to forwarding interests upstream. These
caches serve to reduce the latency of retrieving content ob-
jects in the network. Figure 1 summarizes the forwarding
processes of an interest and a content object via these three
components.

2.2 Manifests in CCNx 1.0

The manifest is a new type of content object that has been
introduced in CCNx 1.0 [22] in order to bundle names of
all content objects constituting a large content and provide
them in a bulk. A manifest provides meta information about
a collection of successive content objects, and enumerates
the ordered and hash-based names of every content object of
the collection†.

In the payload of a manifest, the meta informa-
tion and ordered names are specified with two fields,
ListOfNames and ListOfHashes. The ListOfNames
field enumerates name entries that indicate the content
†See [15] for the detailed format of manifests.
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name prefix (MediaName) and its first chunk number
(StartChunk). By the ListOfNames field, the manifest
can carry multiple collections of content object names and
hashes, i.e., it corresponds to multiple large contents. In
the ListOfHashes, each entry indicates a content object
by a pointer (NameIndex) to its corresponding entry in
ListOfNames and the hash (Hash). In other words, the
NameIndex points out the line number of ListOfNames in a
manifest. To illustrate this binding, consider the case where
the first and second entries of the ListOfNames are

{StartChunk = 3, MediaName = lci:/obj1},

{StartChunk = 1, MediaName = lci:/obj2},

and the first to fourth entries of ListOfHashes are

{NameIndex = 1, Hash = 0x1234},
{NameIndex = 1, Hash = 0xABCD},
{NameIndex = 2, Hash = 0x5678},
{NameIndex = 2, Hash = 0xEF01},

respectively. Then, the first entry of the ListOfHashes rep-
resents a content object with name lci:/obj1/chunk=3
and hash 0x1234, and the second entry represents one with
the name lci:/obj1/chunk=4 and hash 0xABCD. Similarly,
the third and fourth entries represent lci:/obj2/chunk=1
with hash 0x5678 and lci:/obj2/chunk=2 with hash
0xEF01, respectively. Our list interest is basically gener-
ated from the manifest at a consumer and issued as requests
for successive content objects listed in the manifest.

2.3 Related Works on Aggregation of Interests

For the older version of the CCN (CCN 0.x), Byun et al.
[8] introduced a novel method to aggregate multiple inter-
ests with successive names, i.e., chunk number, and create
a special interest specifying the range of chunk numbers at
consumers. The purpose of their modification was to simply
reduce the upload traffic by aggregating multiple interests
into one special interest. Although their objective was dif-
ferent from ours (router workload reduction), this approach
of aggregating interests was fundamentally similar. How-
ever, we may not be able to apply their approach to the latest
version of the CCN –CCNx 1.0–. This is because in CCNx
1.0, routers may use only content object hashes to search CS
and PIT entries for incoming interests [18], and then names
are used just for routing to the content location, namely the
FIB search. Hence, in such a case, the consumer is required
to specify hashes in addition to routable names in the inter-
ests. Thus, since their approach only specifies the range of
chunk numbers, it may not work over CCNx 1.0. In Sect. 3,
we solve this problem and present the list interest designed
for CCNx 1.0.

On the other hand, congestion control has to be intro-
duced even for CCNx 1.0 using list interests. Saucez et
al. [20] introduced a TCP-like mechanism for the standard
CCN based on the congestion window that works in an addi-
tive increase multiple decrease (AIMD) manner [12]. Their

mechanism controls the number of content objects to arrive
by changing the size of the congestion window, i.e., the tim-
ing of the issuance of interests, in an adaptive manner. In
the case of interest aggregating multiple ones, we have to
control the window size according to the number of aggre-
gated interests. Byun et al. proposed a congestion control
mechanism [8] for the interest aggregating multiple ones in
the CCN 0.x. Their mechanism was designed in such a way
that the congestion window size was fixed from the begin-
ning of the communication, and hence it did not control the
window size in an adaptive manner relative to the conges-
tion unlike TCP. From this observation, we consider a new
window-based congestion control method in Sect. 5.2.1 that
can control the window size in an adaptive manner.

3. Reduction of Router Workload by Packing Interests
Using Common Information

One considerable drawback of CCNx 1.0 is that consumers
may have to issue an enormous number of interests in order
to retrieve a content of large size, and then routers may
suffer from high computational workloads to process them.
The list interest is designed to reduce the search complexity
at routers for multiple incoming interests with successive
names. In the following, we describe the structure of the list
interest, its forwarding rule, and its processing rule at routers
in the CCNx 1.0. In Sect. 4, we shall estimate how much the
computational workload can be reduced by list interests.

3.1 Structure of List Interests and Packing Strategy

Basically, the list interest can be viewed as a catalog of
multiple pairs, name and content object hash, of interests.
We should first note that a list interest is generated from
multiple interests, called source interests, by a consumer,
where their names have to be the same except for chunk
numbers suffixed.

Figure 2 illustrates the message structure of the list inter-
est. In the list interest, we place two new fields in its optional
header, MediaName and NumHashEntry. The MediaName
field has the prefix that is the longest one included in all the
source interests, namely, the name excluding the chunk num-
ber. As shown in Fig. 2, the NumHashEntry has the nested
structure containing a chunk number of the content object
and its hash. For instance, consider the case where pairs
of (name, hash of corresponding content object) of source
interests are

Fig. 2 Structure of list interest, where each field name is given in the
CCN specification [17]: [·] means an optional field, ∗· means zero or more
repeated fields.
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(lci:/obj1/chunk=3, 0x1234) ,

and

(lci:/obj1/chunk=4, 0xABCD) .

Then, we have

MediaName=lci:/obj1,

and two NumHashEntry are

{ChunkNum=3, Hash=0x1234},

and

{ChunkNum=4, Hash=0xABCD}.

Here we explain a strategy to pack source interests in a
list interest and name the list interest. First, source interests
that are to be packed in a list interest should be chosen so that
their names are mutually different only in the chunk number,
as described at the beginning of this subsection. Second, the
list interest has to be assigned a name with the same prefix as
the MediaName. These are because the list interest has to be
routed to the original destination of its source interests. Note
that since list interests are defined as kinds of interests, they
are routed in exactly the same manner as standard interests
by their names.

The packing operation at consumers should be done
through manifests explained in Sect. 2.2. As we can see
in Fig. 2, the list interest has been designed in such a way
that the MediaName and NumHashEntry are directly given
from the ListOfNames and ListOfHashes of the manifest
with no violation of the packing strategy stated above. We
thus see that the list interest can be viewed as a dual of the
manifest and that list interests can easily be generated from
the information in the manifest.

Here we give an example to generate a list interest
directly from a manifest. Suppose that a consumer re-
trieved a manifest that has the following ListOfNames and
ListOfHashes.

ListOfNames = {
{StartChunk=3, MediaName=lci:/obj1}

},

ListOfHashes = {
{NameIndex=1, Hash=0x1234},

{NameIndex=1, Hash=0xABCD},

{NameIndex=1, Hash=0x1A2B},

}.

From this manifest, the consumer generates a list interest
of the following values, where each of them corresponds to
each item of ListOfNames in the manifest.

MediaName = lci:/obj1,

NumHashEntry = {ChunkNum=3, Hash=0x1234},

NumHashEntry = {ChunkNum=4, Hash=0xABCD},

NumHashEntry = {ChunkNum=5, Hash=0x1A2B}.

For list interests, we have to determine their names using their
MediaName’s. For example of the above case, the name of
the list interest could be lci:/obj1/chunk=listed.

Consider the case where the consumer wants to leverage
multiple paths, i.e., faces, simultaneously to retrieve multiple
content objects of the same prefix, i.e., MediaName. Then,
list interests for a content should be generated independently
for each face. In particular, the consumer first assigns source
interests to each face simply by following the basic rule of
the standard interest issuance utilizing multiple faces. The
consumer then generates a list interest for each face from
its assigned source interests. We see that this obviously
leverages multiple paths in exactly the same manner as the
standard interests.

3.2 How to Process List Interests at Routers

3.2.1 Basic Procedure with Skipping FIB Search

The basic forwarding process for a list interest can be re-
garded as the parallelized one for the normal interest using
the MediaName of the list interest. Figure 3 illustrates the
process of list interests at routers, and each step in Fig. 3 is
described as follows.
(Step 1) A router receives a list interest by discovering its
name suffix, e.g., chunk=listed, and/or the existence of
MediaName and NumHashEntry in the optional header. It
then first reads the optional header of the list interest and
extracts full-names and the corresponding content object
hashes packed in it.
(Step 2) Then, the router searches CS and PIT by the ex-
tracted, say, L pairs of (name, hash) as standard L consecu-
tive look-ups of incoming interests.
(Step 3) Finally, the router updates the list interest by remov-
ing the NumHashEntry’s that have been look-up hits at CS
or PIT, and looks up the FIB entry for the list interest as well
as the standard interest.

We can see that in the above flow, although the router
looks up multiple (L) entries in CS and PIT, it checks FIB
only once. In other words, it skips L − 1 FIB searches for L
consecutive requests. Hence, we can easily expect that this
skip dramatically reduces the router workload.

The list interest itself should be discarded by the router
when it has no NumHashEntry (all NumHashEntry’s are
deleted) in Step 3. Note that since routers on the path from
the consumer to the router did not create PIT entries for the
list interest itself, we can discard it with no violation of the
CCN forwarding rule.

Note that since the optional header is not included in
the source of validation data [22], they do not affect the val-
idation of the container, i.e., the list interest itself. Thus, the
update of the optional header does not affect the validation
as well.
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Fig. 3 Brief sketch of router’s processing flow of a list interest.

Fig. 4 The flow of CS and PIT searches with termination, which corre-
sponds to (Step 2) in Sect. 3.2.1. The sequence (P1, . . . , PL ) represents L
(name, hash) pairs extracted from an incoming list interest. After this flow,
a new list interest is generated for (PL1+L2+1, . . . , PL ).

3.2.2 Acceleration by Terminating CS and PIT Searches

For L consecutive requests, although the basic forwarding
process given in Sect. 3.2.1 can skip L − 1 FIB searches, it
has to search L times each for CS and PIT. In this subsection,
we introduce a pragmatic method to reduce the number of
CS/PIT look-ups and accelerate the processing of list inter-
ests.

Recall that a list interest is generated from source inter-
ests that have successive chunk numbers, and one content is
composed of their corresponding content objects. Consid-
ering a realistic scenario of content retrieval, we can easily
expect that the pending status of a source interest is likely
to coincide with that of its previous one at a router. Much
the same is true on the caching status of a content object
corresponding to a source interest. Based on this observa-
tion and expectation, our method terminates queued search
operations for source interests at a router when the output of
subsequent operations can be expected.

Figure 4 illustrates the flow of our method with termi-
nation of CS and PIT searches, which takes L (name, hash)

pairs, P1, . . . , PL , extracted from a list interest as input. This
corresponds to the (Step 2) in Sect. 3.2.1. Without loss of
generality, we assume that the chunk number of the name in
Pi is smaller than that in Pi+1. The method consists of two
phases, i.e., the CS search phase and PIT search phase, as
shown in Fig. 4. In the CS search phase, the router looks up
Pi’s in CS sequentially from i = 1, and immediately termi-
nates the look-up sequence when Pi (= PL1+1) is not found
in CS. We suppose it is terminated for i = L1 + 1 as Fig. 3.
We then presume that content objects for PL1+2, . . . , PL are
not cached, as well as PL1+1, and start the PIT search phase
with PL1+1, . . . , PL as input.

The PIT search phase runs in the same manner as the CS
search phase. The router immediately terminates the look-up
sequence when Pj (= PL1+L2+1) is not found in PIT. Then,
interests for PL1+L2+1 and PL1+L2+2, . . . , PL are regarded as
ones that have never been received by the router. The router
finally updates the list with PL1+L2+1, . . . , PL and transitions
the phase of the FIB search, i.e., (Step 3) of Sect. 3.2.1.

We should note that the termination of CS/PIT search
sequences described above can be realized only by listing
successive interests, i.e., list interests. If we implement this
for standard interests, the router has to always check whether
an incoming interest is a part of successive ones for the
retrieval of a big content. This should require an undesirable
computational workload and extra buffering at routers. On
the other hand, list interests themselves explicitly prove that
they include successive interests, and hence list interests
enables computationally-reasonable operations to terminate
successive CS/PIT searches.

As the conclusion of this section, we justify the termi-
nation under the ‘expectation’ on subsequent (name, hash)
pairs. Namely, we show that the termination does not violate
the forwarding rule even if some erroneous expectations are
given. First, consider the case where a content object for
a (name, hash) pair Pj is already cached in CS and the CS
search is terminated before Pj due to an erroneous expecta-
tion of CS entries. A PIT entry for Pj is generated, and it will
be satisfied sometime when a content object for Pj newly ar-
rives. Then, the cached content object for Pj will be evicted
at some time. Although this could incur a performance loss
in terms of throughput, it does not harm the forwarding rule
at all. Note that such erroneous expectations of CS entries
happen especially after the router evicts CS entries according
to its caching strategy. Recall that most caching strategies
are mainly based on the popularity of cache entries. We thus
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see that only a part of a content, i.e., a part of a sequence
consisting of content objects, is rarely evicted. We finally
note that since list interests is designed so as to co-exist with
standard interests, the caching/pending and eviction rules in
CS/PIT should not be customized/specialized for list inter-
ests but still follow the standard strategy.

Next consider the case where a PIT entry for Pk is al-
ready in PIT and the PIT search is terminated before Pk .
Then, a router newly creates another PIT entry for Pk , and
issues a new list interest still including Pk . It consequently
has two individual PIT entries for Pk . Recall that accord-
ing to the fundamental matching rule, an issuance of one
interest always matches a receipt of one content object at
a router. This implies that each of two PIT entries for Pk

can be correctly satisfied by each receipt of two individual
content objects for Pk . Of course, this incurs unnecessary
bandwidth consumption, and may yield the degradation of
throughput. In Sect. 5.1, we discuss the probability of er-
roneous expectations, and present a mathematical analysis
that the erroneous expectations are unlikely to happen in
the sequential retrieval of content objects composing a large
content.

4. Analysis of Look-Up Complexity for List Interests

This section evaluates the complexity to look up FIB/PIT/CS
entries via list interests described in the previous section.
Consider the case where a router will serve a request for
L(> 0) content objects whose names are different only in
their chunk numbers. Then, this section first roughly intro-
duces the standard complexity to serve the request given as
L individual interests at the CCNx 1.0 router. Next, we esti-
mate the complexity to process the request given by the list
interest packing the L interests, and show that the complexity
can be dramatically reduced by using the list interest from
the standard complexity.

4.1 Router Workload to Process Individual Interests

We first evaluate the complexity of the look-up procedure
for one standard interest by referring to the standard process
shown in Fig. 1. Figure 5 illustrates the flow of the standard
look-up procedure, where each C∗ represents the complexity
of each step. Table 1 summarizes notations for the com-
plexity in the standard look-up procedure. Here we note that
CReadOp can be regarded as a constant value for any incoming
interest, including list interests. Also, note that regardless
of the PIT search result, PIT is updated, and hence the PIT
search operation always involves the complexity CUpdatePIT.

Considering the router that processes L individual inter-
ests of consecutive names, it simply requires L independent
executions of Fig. 5. Let CIndividual be the total complexity
of the L executions. Let L1 and L2 (L1 + L2 ≤ L) be the
number of CS look-up hits for the L interests and that of PIT
look-up hits, respectively. We then have

Table 1 Notations for complexity of each step in the standard look-up.
Notation Description
CReadOp Parsing and reading the interest
CSearchCS Searching the CS
CRespondCS Creating a content object
CSearchPIT Searching the PIT
CSearchFIB Looking up the longest matching prefix in FIB
CUpdatePIT Updating or creating a PIT entry

Fig. 5 The flow of the standard look-up procedure for an incoming interest
and the complexity of each step, where each C∗ represents the complexity
of each step (See Table 1).

CIndividual = L(CReadOp + CSearchCS) + L1CRespondCS

+ (L − L1)(CSearchPIT + CUpdatePIT)
+ (L − L1 − L2)CSearchFIB, (1)

where we have assumed that the CS search operation always
involves the constant complexity CSearchCS, and that the same
is true of CSearchPIT and CSearchFIB. We can see that L1 and L2
highly depend on the popularity of the requested content, and
L1 and L2 could be positive only for very popular content. If
neither CS nor PIT entry is found for each one, the complexity
CIndividual is proportional to L.

4.2 Look-Up Complexity for the List Interest

As in the previous subsection, here we summarize the look-
up procedure for a list interest, which is shown in Fig. 3.
Figure 6 briefly illustrates the flow of the look-up procedure
for the list interests packing L successive source interests,
and also shows the complexity in each step. In Fig. 6, we
have assumed that the read and write (update) operations
over an object on a memory have the same number of CPU
clock cycles†. We thus estimate the complexity to update the
list interest as CReadOp.

First, suppose that the router receives a list interest in
†In fact, each of the read and write operations on Pentium

processors involves three clock cycles [10].
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Fig. 6 The brief flow of the look-up procedure for an incoming list interest
containing L NumHashEntry’s and the complexity of each step, where
the CS and PIT the search operation are terminated at i = L1 + 1 and
i = L1 + L2 + 1 as Fig. 4, respectively. (See Fig. 4 for the detailed flow in
CS/PIT search with termination.)

which L NumHashEntry’s are contained. Also, assume that
in the CS and PIT search phases, the search operations are
terminated at i = L1 + 1 and i = L1 + L2 + 1 as Fig. 4,
respectively. We should note that when L1 and L2 in Fig. 6
exactly equal L1 and L2 in Fig. 5 for a fixed set of L source
interests, it is the ideal case where we have no erroneous
expectation at termination. As shown in Fig. 6, the look-up
complexity for L NumHashEntry’s in CS and PIT can be
given as

CS: (L1 + 1)CSearchCS + L1CRespondCS,

PIT: (L2 + 1)CSearchPIT + (L − L1)CUpdatePIT,

respectively. From this observation, the total com-
plexity CList in the case of the list interest packing L
NumHashEntry’s is given as follows.

CList =2CReadOp + (L1 + 1)CSearchCS + L1CRespondCS

+ (L2 + 1)CSearchPIT + (L − L1)CUpdatePIT

+ CSearchFIB, (2)

where we have assumed that L1 + L2 < L.

4.3 Comparison with the Standard Look-Up

Here we compare the total look-up complexity of L individ-
ual interests CIndividual with that of one list interest CList con-
taining the L NumHashEntry’s of the same interests, where
CIndividual and CList are given in Eqs. (1) and (2), respectively.

In the following, we analyze the ratio CList/CIndividual that rep-
resents the reduction rate of the router’s workload obtained
by the list interest. From now on, we will call L the list size.

First, we introduce some reasonable assumptions. Since
the search on the FIB/CS/PIT must involve a number of mem-
ory accesses, we can assume that CReadOp can be omitted in
Eqs. (1) and (2) as a negligible cost. Note that since CUpdatePIT
is the complexity to update/create a PIT entry after the execu-
tion of a PIT look-up, it is just a write access to the memory.
We thus see CUpdatePIT << CSearchPIT, and CUpdatePIT must be
negligible compared to CSearchPIT. Similarly, we can also see
that the complexity of memory access CRespondCS is negli-
gible compared to CSearchCS. From these assumptions, we
can have the following approximation of CList/CIndividual that
clearly shows the dominant factors in the reduction of the
router workload and when the ratio is minimized.

CList/CIndividual

≃ (L̂1 + 1)CSearchCS + (L̂2 + 1)CSearchPIT + CSearchFIB

LCSearchCS+(L−L1)CSearchPIT+(L−L1−L2)CSearchFIB
,

(3)

where, in order to clarify the difference, we have supposed
that L1 and L2 are those in Fig. 5, and that L̂1 and L̂2 are L1
and L2 in Fig. 6. We can immediately see from Eq. (3) that
if the router have never previously processed corresponding
interests and content objects (i.e., the worst case scenario in
terms of cache-hit rate), the ratio CList/CIndividual fundamen-
tally depends only on L, and the power of the list interest is
maximized in terms of the reduction of router workload by
the skip and termination of FIB/CS/PIT look-ups.

Figure 7 illustrates the ratio CList/CIndividual for various
settings of L, L1 and L2. In Fig. 7, we have supposed the
following settings for the list size L. First suppose that
the size of the interest is limited to 1280 bytes. Then,
the maximum possible size of the optional header of in-
terest packets is less than 1260 bytes (8 bytes fixed header
and at least 12 bytes CCN message). Recall that the hash
restriction of the content object is computed by SHA-256
[17]. Thus, we also assume that the MediaName and each
NumHashEntry are 16 bytes and 48 bytes in the TLV format
[17]. From these assumptions, the maximum possible list
size is limited to L = 25 in Fig. 7. In Fig. 7, we have also
assumed that L1 = L̂1, L2 = L̂2, CSearchCS = CSearchPIT and
3.08CSearchCS = CSearchFIB

†. Namely, we assumed an ideal
environment for list interests where no erroneous expecta-
tions occur. We should note that such an ideal environment
is also realistic for the retrieval of successive content objects
of a large content. As we can see in Fig. 7, the reduction rate
of the complexity is CList/CIndividual ≤ 1 in any case, i.e., the

†The paper [21] evaluated the average numbers of FIB look-
ups (simple search of the bash-based FIB) in one process of their
algorithm for different prefix lengths from which the look-up of
hash-based FIB starts. 3.08 is the minimum one in their evalu-
ation. Since the average complexity of searching hash tables is
O(1), we set 3.08CSearchCS = CSearchFIB in the example as a rough
assumption.
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Fig. 7 The ratio of the complexities of the list interest and that of the standard individual interests
CList/CIndividual for L with various settings of L1 and L2, where we have assumed L1 = L̂1, L2 = L̂2,
CSearchCS = CSearchPIT and 3.08CSearchCS = CSearchFIB.

gain of the list interest is always positive, and it can be seen
to be approximately inversely proportional to the list size L.
Especially in Fig. 7(a), i.e., the worst case scenario for router
workload, the list interest aggregating multiple successive
interests can reduce the workload of the look-up operations
at the router dramatically to at most 4% of the standard in-
dividual interests. Observing Figs. 7(a) to (d), we can also
see that as L1 and L2 increases, the gain of the list interest
becomes smaller although it is always positive.

Since the complexities CSearchCS, CSearchPIT and
CSearchFIB themselves are highly dependent on the network
status, memory architectures, databases, etc., we cannot
strictly and generally estimate the gain of the list inter-
est here. However, we claim that in general for the small
(L1 + L2)/L << 1, the reduction rate of the complexity by
the list interest dramatically improves (becomes smaller) as
the list size L increases. This is because of the following.
Recall that the number of FIB look-ups for one list interest is
always 1 regardless of L1 and L2, and that CSearchFIB is gen-
erally more serious for routers than CSearchCS and CSearchPIT
due to the search for the longest matching prefix in FIB. From
these facts, we see that even if we do not execute the termina-
tion at PIT and CS searches, we always have the positive gain
by the list interest as L increases. Moreover, observe that
we always have CList/CIndividual ≃ 1 for any L when L1 = L
from Eq. (3). This implies that the complexity of processing
the list interest can be estimated to be almost the same as
that for the standard L interests. Therefore, we conclude that
the list interest can reduce the router’s workload to process
incoming interests in any cases.

5. Discussion

In this section, we shall discuss topics on the implementation
and deployment of list interests. First, we consider the prob-
ability of erroneous expectation at the termination of CS and
PIT searches. We then consider the congestion control for
list interests and the list size L for deployment.

5.1 Erroneous Expectation for Termination

Here we mathematically express the probability of erroneous
expectations in the termination of CS/PIT searches. We first
give several notations. Let f (Pi) be a Boolean random
variable meaning the statement “the (name, hash) pair Pi

is found in CS.” We also let g(Pi) be one meaning “Pi is
found in PIT.” For the sake of simplicity, we represent the
Boolean values true and false by T and F, respectively. For
example, f (Pi) = T represents an event where a CS entry
is successfully found for Pi , and f (Pi) = F expresses its
inversion.

For the CS search operations with termination, the fol-
lowing equation gives the probability that there exist one or
more CS entries for a (name, hash) pair PL̂1+i

(i > 1) after
a cache-miss for PL̂1+1, i.e., the expected value L̂1 is smaller
than the exact value L1.

Pr
[
L̂1 < L1

]
= 1 − Pr


L∩

i=L̂1+2

( f (Pi) = F)
����� f (PL̂1+1) = F


= 1 −

L∏
k=L̂1+2

Pr
 f (Pk ) = F

�����
k−1∩

j=L̂1+1

( f (Pj )=F)
 , (4)

where we have supposed that for individual events, say X = x
and Y = y , (X = x) ∩ (Y = y) means that both X = x and
Y = y simultaneously occur. Similarly, for the erroneous
expectation in PIT search, we have

Pr
[
L̂2 < L2

]
= 1 − Pr


L∩

i=L̂1+L̂2+2

(g(Pi) = F)
�����g(PL̂1+L̂2+1) = F


= 1 −

L∏
k=L̂1+L̂2+2

Pr
g(Pk )=F

�����
k−1∩

m=L̂1+L̂2+1

(g(Pm)=F)
 . (5)

Assume that a router has the CS and PIT of sufficiently-
large size, and that the eviction of CS entries and the timeout
of PIT entries have never been executed. We also assume
that the consumer wants to retrieve a content that consists of
L consecutive content objects represented by (name, hash)
pairs P1, . . . , PL , and that Pi exactly corresponds to the i-th
content object in the sequence. Assuming that such content
objects are queried sequentially in the order P1, . . . , PL , we
see that the caching status for Pi , i.e., the random variable
f (Pi), depends on the previous ones f (Pi−1), f (Pi−2), . . . .
For the sake of simplicity, here we introduce a rough as-
sumption that the random variable f (Pi) depends only on its



2528
IEICE TRANS. COMMUN., VOL.E99–B, NO.12 DECEMBER 2016

previous one f (Pi−1) and is mutually independent of other
random variables. We thus have the following simplified
version of Eq. (4).

Pr
[
L̂1 < L1

]
= 1 −

L∏
k=L̂1+2

Pr
[

f (Pk ) = F | f (Pk−1) = F
]
, (6)

By introducing the same assumption on the random variable
g(Pi), we obtain the simplified Eq. (5) as

Pr
[
L̂2 < L2

]
= 1 −

L∏
k=L̂1+L̂2+2

Pr
[
g(Pk ) = F | g(Pk−1) = F

]
. (7)

To make Eqs. (6) and (7) simpler for the rough esti-
mation of the probability of erroneous expectations, here
we give a supposition that the conditional probability of
f (Pi) = F given f (Pi−1) = F and that for g(Pi) = F and
g(Pi−1) = F as follows.

Pr[ f (Pi) = F | f (Pi−1) = F] = α,

and

Pr[g(Pi) = F | g(Pi−1) = F] = β,

for any i, where we have assumed that α and β are constant
probabilities. Under these assumptions, we have

Pr
[
L̂1 < L1

]
= 1 − αL−L̂1−1,

and

Pr
[
L̂2 < L2

]
= 1 − βL−L̂1−L̂2−1,

from Eqs. (6) and (7), respectively. This implies that for
L ≤ 25 as Fig. 7, we can always obtain sufficiently small
probabilities, say Pr

[
L̂1 < L1

]
, Pr

[
L̂2 < L2

]
< 0.05, when

α, β are sufficiently high, e.g., α, β > 0.998. Here we note
that α and β can be viewed as dependencies between f (Pi)
(g(Pi)) and the previous one f (Pi−1) (g(Pi−1)). This implic-
itly means that as the dependency among f (P1), . . . , f (PL )
(g(P1), . . . , g(PL )) increases, the probability of erroneous
expectations decreases. Hence, the above analysis gives
the evidence of our key idea that in the sequential retrieval
of ‘strongly-mutually-dependent’ content objects, like those
composing videos, erroneous expectations are unlikely to
incur in the termination of CS and PIT searches. In other
words, the termination should be done only for such large
contents.

5.2 Congestion Control for List Interests

Considering the deployment of list interests, we have to use
some kind of congestion control method specialized for list
interests. However, congestion control methods of CCN

Algorithm 1 Our congestion control method utilized for list
interests: RTO stands for the retransmission timeout. A
variables W is the window size, and another variable P is
the number of content objects that a consumer waits for their
arrival as responses to interests previously transmitted. The
list size L is the predefined constant value in this method.
N is the value of the counter used to increment the window
size.

1: initialization: W ← L, P ← L, N ← 0
2: if Receive content object until RTO then
3: if Is slow start phase then
4: W ← W + 1
5: else (congestion avoidance phase)
6: N ← N + 1
7: if N = W then
8: W ← W + 1
9: N ← 0

10: end if
11: end if
12: else
13: W ← max{W/2, L}
14: N ← 0
15: end if
16: P ← P + 1
17: while W ≥ P + L do
18: Pack L interests into a list interest and send it
19: P ← P + L
20: end while

are currently under investigation in the research community,
and no specific approach is given in any CCN specification
and implementation even for standard interest-based content
retrieval so far. Hence, in this subsection, we pick up an
existing ‘TCP-like’ approach as a popular instance, and give
its novel modification to list interests as a consideration of the
deployment. Our method for list interests performs exactly
the same as the original method for standard interests in terms
of the throughput, and implies a way of the deployment of
list interests in the CCN.

5.2.1 A Window-Based Congestion Control Method

As mentioned in Sect. 2.3, Byun et al. [8] proposed a
window-based congestion control method for the interest
aggregating multiple ones in CCN 0.x, and their scheme can
be applied to the list interest in CCNx 1.0. However, the
window size is always fixed in their scheme, which is de-
fined as the number of interests that can be issued without
waiting for the responses (content objects) to the packets pre-
viously transmitted. This implies that their scheme cannot
adaptively control the number of requests for content objects
according to the network status unlike TCP.

For the above problem, here we give the TCP-like con-
gestion control method for list interests that can control the
window size in the same fashion as TCP. Algorithm 1 de-
scribes our congestion control method designed for list in-
terests. The purpose of our method is to control the number
of content objects in-flight in the network by controlling the
window size adaptively in the exactly the fashion as TCP.
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Our method has two phases, i.e., the slow start phase and the
congestion avoidance phase, as congestion control methods
for TCP. Although the window size W is determined in the
same manner as TCP Reno [12] at lines 2–15 of Algorithm 1,
we can take other window control methods and determine W
in a different fashion. We also see that by introducing lines
2–15, Algorithm 1 can adaptively control the window size
W unlike [8]. At lines 17–20, the algorithm packs L interests
into a list interest, and the number of content objects to arrive
P is updated. We should note that if L = 1 in Algorithm 1,
it coincides with the existing congestion control method for
the standard interest [20]. This implies that Algorithm 1 is
a natural extension of the standard method for CCN [20] to
the list interest.

5.2.2 Relationship between List Size and Performance

As shown in Sect. 4, the router complexity decreases as the
list size L grows. However, we have no strategy to determine
L in Algorithm 1 for now, and hence we need to evaluate
how the performance of the content retrieval depends on
L. To this end, here we simulate the content retrieval using
CCN and evaluate the performance for the different L’s using
Algorithm 1.

Table 2 summarizes the simulation environment, and
Figure 8 describes the network topology used in the simula-
tion. In order to evaluate the performance of our algorithm,
we use the following metrics: utilization and fairness.

• Utilization U: Utilization U is defined as the amount
of transferred data over the bottleneck link during some
time interval divided by the product of link capacity
and that time interval, as given by

U =
(transferred segments) · (segment size)

(link capacity) · time
.

We should note that the utilization is generally an im-
portant metric, since users can download content in a

Table 2 Simulation environment.
Simulator : ndnSIM [6]
Header size : 41–44 bytes (varying in ndnSIM)
Payload size of content objects : 1024 bytes
Queue size of CCN routers : 100 packets
Initial slow-start threshold : 64
Simulation time : 100 s

Fig. 8 A dumbbell topology and the setting of propagation delay and
capacity for each link.

short time if the utilization is high.
• Fairness F: The fairness in this paper follows the simple

rule that if there are n flows through a bottleneck link,
each flow should account for 1/n of the bandwidth of the
bottleneck link. In this context, the fairness F, a.k.a.,
Jain’s metric of fairness [9], is defined as

F =
(
∑n

i=1 bi)2

n ·∑n
i=1 b2

i

,

where n is the number of flows, bi is the rate of flow
i. This metric ranges continuously in value from 1/n
to 1, with 1 corresponding to equal allocations for all
users. We extend this metric to evaluate the fairness for
the specific length of periods. The fairness Fτ with a
measuring period τ is defined as

Fτ =
1
m
·

m∑
j=1

(
∑n

i=1 bi j )2

n ·∑n
i=1 b2

i j

,

where m is the total number of measuring period, bi j is
the rate of flow i in the jth period.

By substituting the result of the simulation into the
above definitions of U and Fτ , here we shall evaluate the
performance. Table 3 summarizes the simulation result, and
Fig. 9 illustrates the time variation of the window size. As
we can see in Table 3, the utilization decreases as the list size
increases. This is because content objects are intermittently
transmitted by using the list interest. However, the difference
of the utilization between the normal interest (L = 1) and the
list interest (L > 1) is less than 0.01. Thus, the disadvantage
of the list interest is quite small. We can also see in Table 3
and Fig. 9 that the fairness of τ = 1s and 10s for the list
interest is lower than 0.9 for any L > 1. This is because
the list interest generates the burst transmission of content
object packets, and accordingly, content object packets in a
particular flow are dropped when the router queue is full. On
the other hand, the fairness of τ = 100s for the list interest
(L > 1) is almost the same as the normal interest (L = 1)
for any L. Considering the case where a large content is
retrieved through CCN, the fairness for the long period, i.e.,
τ = 100s can be more important than that for short period,
i.e., τ = 1s and 10s. Hence, we claim that from the results of
the utilization and the fairness for τ = 100s, the congestion
control for the list interest (L > 1) demonstrates almost the
same performance as the exiting scheme [20] for the normal
interest (L = 1). From these results and observations, we
thus conclude that in this network setting, the list interest

Table 3 UtilizationU and fairnessF with eachτ for the list size L, where
we note that the case of L = 1 shows the result of the existing congestion
control method [20] for the standard interest.

List size L 1 5 10 15 20 25
U 0.985 0.985 0.983 0.983 0.979 0.978

Fτ (τ=1s) 0.980 0.562 0.493 0.468 0.586 0.646
Fτ (τ=10s) 0.997 0.760 0.688 0.651 0.767 0.847
Fτ (τ=100s) 1.000 0.985 0.971 0.961 0.986 0.995
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Fig. 9 Time variation of the window size, where we set L = 1 and
L = 25.

with congestion control does not harm the performance of
the content retrieval in the CCN for any L. Therefore, we
should set L as large as possible, i.e., L = 25 in the setting
of interests of size 1280 bytes, from the viewpoint of the
router workload. Of course, we have to consider the various
and realistic cases of a lossy network, a carrier network, etc.
in order to find the optimal strategy to determine L in any
situation. We remain this as a future work.

Although we considered an end-to-end congestion con-
trol method in this section, hop-by-hop ones are also imagin-
able. For instance, each router counts the number of entries
in each flow on PIT and compares the list size to a thresh-
old when it receives the list interest. If the list size exceeds
the threshold, the router changes the list interest so as not
to exceed the threshold and returns a NACK packet to the
consumer. This method possibly improves the fairness of
the short period, e.g., τ = 1s, for the list interest. We should
note, however, that such a hop-by-hop method involves ad-
ditional routers’ workload in order to control flows at every
router, which violates the main objective of list interests.

6. Concluding Remarks

In order to reduce the router workload in CCNx 1.0, this
paper proposed the list interest that is generated from mul-
tiple interests with their mutually-common information. We
demonstrated that by requesting content objects through list
interests, routers can search FIB/PIT/CS with dramatically
smaller complexity than the case of the standard interest-
based request. Furthermore, we also proposed a novel con-
gestion control mechanism for list interests based on TCP-
like congestion window. As the conclusion of this paper, we

claim that our list interest is a natural consequence of the
concept of the manifest in CCNx 1.0, and that we should use
list interests as the requests for content objects enumerated in
the manifests from the relationship between the list interest
and the manifest.
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