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A B S T R A C T

The traditional Domain Name System (DNS) lacks fundamental security and privacy features in its design.
As privacy concerns increased on the Internet, security and privacy enhancements of DNS have been actively
investigated. Specifically, in the context of user privacy in DNS queries, several relay-based anonymization
schemes have been recently introduced. However, these schemes are vulnerable to collusion between relays and
full-service resolvers, which means user identities cannot be hidden from resolvers. This paper introduces a new
concept for achieving user anonymity in DNS queries through a multiple-relay-based approach, called 𝜇ODNS
(Mutualized Oblivious DNS), by extending the concept of existing relay-based schemes. 𝜇ODNS introduces a
reasonable assumption that each user has at least one trusted or dedicated relay within the network and
mutually shares the relay with other users. The user simply sets his trusted relay as the next-hop relay to convey
his queries to the resolver and randomly chooses its zero or more subsequent relays shared by other entities.
Under this assumption, the user’s identity remains concealed from the target resolver in 𝜇ODNS even if an
unknown subset of relays colludes with the resolver. Namely, in 𝜇ODNS, users can preserve their anonymity
by paying a small cost of sharing their resources. Additionally, we extend existing protocols, Anonymized
DNSCrypt and Oblivious DoH, to provide practical Proof-of-Concept specifications and implementations as
instances of 𝜇ODNS. These implementations are publicly available on the Internet as open-source software
and public services. Furthermore, we demonstrate, through measurements of round-trip times for DNS messages,
that our implementation can minimize the performance degradation resulting from its privacy enhancements,
achieving performance levels that maintain the positive user experiences observed in existing schemes.
1. Introduction

Due to the recent increase and exposure to Internet censorship,
users have been more concerned about their online activities being
monitored, and demand technologies designed to protect their privacy.
Domain Name System (DNS) is one of the components of the Internet
that is being actively extended and enhanced in this context.

DNS plays a role in mapping human-readable hostnames to
machine-readable information on the Internet; a user (or a stub resolver)
exchanges a hostname with its IP address and associated resource
records by querying a full-service resolver. In the traditional DNS called
Do53, this exchange of DNS messages, i.e., a user’s query and a
resolver’s response, is performed over UDP or TCP on port 53 in the

✩ The material of this paper was presented in part at arXiv [1] in 2021. A part of this work was done during the first author’s stay at CyLab, Carnegie
Mellon University, PA, USA in 2022. Project web page: https://junkurihara.github.io/dns/. Source codes (https://github.com/junkurihara/encrypted-dns-
server-modns, https://github.com/junkurihara/dnscrypt-proxy-modns, https://github.com/junkurihara/doh-auth-proxy, https://github.com/junkurihara/doh-
server) and experimental nodes (https://github.com/junkurihara/experimental-resolvers) are also publicly available.
∗ Corresponding author at: Graduate School of Information Science, University of Hyogo, 7-1-28 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Hyogo,

Japan.
E-mail addresses: kurihara@ieee.org (J. Kurihara), toshi@gsis.u-hyogo.ac.jp (T. Tanaka), t-kubo@zettant.com (T. Kubo).

form of plaintext. This means that in Do53, the user’s Internet activity
could be easily exposed to monitoring authorities.

In order to overcome such a lack of privacy in the classic design
of DNS, there have been proposed some encryption schemes for DNS
messages [2–5] to avoid them from being wiretapped. In these schemes,
a secure encryption channel is established by a certain public key
cryptography between a user and an encryption-enabled full-service
resolver, and DNS messages are exchanged via the channel. Hence these
schemes can conceal users’ activities in DNS from censorship authorities
monitoring messages transported. However, another privacy concern
has been raised here even if we employ these encryption techniques:
While DNS messages are encrypted, full-service resolvers always see
vailable online 2 November 2023
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Table 1
Terminologies and conceptual words related to anonymization in DNS.

Term Description

Anonymization The process of concealing or obfuscating the origin of a DNS query, i.e., the user’s identity, rendering
it challenging or infeasible to trace it back to its source.

Relay A network node that simply forwards an incoming message basically without disclosing the previous
node’s identity to the next node. This paper supposes that when such a node colludes with a resolver,
the previous node’s identity is exposed to the resolver.

Mixing queries A relay’s operation that unintentionally puts messages incoming from multiple nodes to a single
queue and forwards each message towards its next destination node from the queue. When the relay
serves messages received from multiple nodes, each destination node is unable to uniquely identify
the specific source node behind the relay for each message.

Collusion
resistance

The protocol and system’s ability to withstand collusion among the target resolver and compromised
relays. The goal of collusion resistance is to maintain the user’s privacy, i.e., conceal the origin of
DNS queries, despite the potential cooperation of colluded nodes.
plaintext messages from/to users by the nature of DNS, and they can
fully observe any user activities in DNS.

In order to resolve this second privacy concern against full-service
resolvers, there have been proposed several anonymization techniques
[6–11] to hide a user’s IP address from a full-service resolver. Ta-
ble 1 summarizes the terminologies and conceptual words related to
anonymization in DNS. Oblivious DNS (ODNS) [6] is the first anonymiza-
tion scheme for DNS, which was designed to be compatible with
the standard DNS architecture. In the scheme, an ODNS-specialized
resolver is introduced, and an existing full-service resolver over Do53
is leveraged as a relay forwarding encrypted DNS messages from/to a
user to/from the ODNS resolver. In other words, an encrypted channel
is built between a user and the ODNS resolver, encrypted DNS messages
are exchanged via the existing full-service resolver over Do53, and
the ODNS resolver resolves plaintext DNS queries on behalf of the
full-service resolver. Thus the user’s address is concealed from the
ODNS resolver thanks to the relay, and DNS messages are hidden
from the relay by the encryption as well. By adopting this relay-
based concept into encrypted DNS schemes [3,5], Anonymized DNSCrypt
(ADNSCrypt) [10,11] and Oblivious DNS over HTTPS (ODoH) [7–9]
have recently been introduced. These schemes omit the compatibility
with Do53, i.e., existing Do53 resolvers are NOT reused, unlike ODNS.
Namely, they simply introduce dedicated intermediate relays between
users and encryption-enabled resolvers. This simplified architecture
results in their good performance comparable to standard encrypted
DNS schemes [9].

There exists one significant drawback in such novel DNS anonymiza-
tion schemes using relays: The lack of collusion resistance, i.e., the
privacy could be completely corrupted when the relay colludes with
the target resolver. Considering the current deployment of DNS, users
do not have various choices of full-service resolvers enabling DNS
message encryption and usually use ones operated by large and lim-
ited entities [12], e.g., Google, Cloudflare, Quad9, etc. Much like
encryption-enabled resolvers, relays would be operated by such limited
big players as mentioned in [9, Section 7.1]. Indeed, as far as we
know, just a few big CDN providers provide such relays in Apple
iCloud Private Relay, a deployment of ODoH. Hence it may increase
concerns about collusion and surveillance. Considering a case where a
user does not trust such existing relays, building a relay dedicated to
the user should be the simplest solution. However, this is completely
useless since the relay’s address exposed to the target resolver can be
uniquely coupled with the user itself. In other words, every user must
unconditionally trust and choose public and shared relay forwarding its
message when we employ these anonymization schemes. We thus have
no way to fundamentally remove the concern about the collusion in
these schemes.

In this paper, our objective is to address the aforementioned issues
related to collusion in existing anonymization schemes and to present
a practical solution that ensures user anonymity, even when users are
unable to place trust in the majority of network nodes involved in DNS.
2

To achieve this goal, we make the following contributions in this paper:
Proposal of 𝜇ODNS Concept: This paper introduces a new architec-
tural concept, termed 𝜇ODNS (Mutualized Oblivious DNS), aimed
at preserving user anonymity in DNS messages. 𝜇ODNS is de-
signed to safeguard the user’s anonymity in the context of DNS
even when facing untrusted resolvers and potentially colluding
network nodes. It achieves this by making a small and reason-
able assumption concerning network nodes proximate to a user.
Additionally, 𝜇ODNS aims to minimize the performance degra-
dation resulting from privacy enhancements. Architecturally,
𝜇ODNS can be seen as an extension of existing relay-based
schemes, enabling multiple relays and route randomization. In
this sense, it adopts an approach akin to Tor [13], but with a
highly specialized and streamlined focus on DNS. Within the
𝜇ODNS framework, each user can maintain the anonymity of DNS
messages by incurring only a minor cost, even in scenarios where
certain network nodes collude with the target resolver. Furthermore,
it ensures that no user can compromise the anonymity of others.

Explicit PoC Design and Implementation: This paper provides a compre-
hensive exposition of the design and implementation of 𝜇ODNS
as Proof-of-Concept (PoC). It achieves this by extending existing
DNS anonymization schemes, specifically ADNSCrypt [10,11]
and ODoH [7–9], to effectively realize the concept of 𝜇ODNS
while maintaining compatibility with the original schemes.

Internet-Based Performance Evaluation: Additionally, this paper con-
ducts a performance evaluation of 𝜇ODNS using the PoC imple-
mentation deployed on the Internet. The results of this evalu-
ation demonstrate that 𝜇ODNS can minimize the performance
degradation caused by its privacy enhancements, achieving per-
formance levels comparable to the underlying original protocol.

In summary, this paper contributes by introducing the 𝜇ODNS con-
cept and providing its explicit implementations and evaluations. Based
on these contributions, we claim that our anonymization concept is
practical and reasonable, addressing both its design and performance
aspects in the context of preserving user privacy in the severe network
environment.

The remainder of this paper is organized as follows: Section 2
introduces the background of our work, summarizes recent studies on
privacy in DNS, and explains the potential problems of collusion in
existing schemes. Section 3 presents assumptions and formally intro-
duces problems considered in this paper. Under the given assumptions,
Section 4 overviews our concept of 𝜇ODNS and explains how it works
in the presence of colluded nodes. Section 5 briefly explains instances
of 𝜇ODNS based on ADNSCrypt and ODoH as its Proof-of-Concept im-
plementations. Section 6 gives some discussions on 𝜇ODNS and its PoC
implementations from the viewpoints of security, privacy, performance,

and deployment. Section 7 finally concludes this paper.
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Fig. 1. Relationship among existing encrypted and anonymized DNS protocols.
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2. Background and related work

Domain Name System (DNS) [14,15] was originally standardized
at IETF as a system that maps human-readable hostnames to machine-
readable resource records such as IP addresses. Since the traditional
DNS has architectural problems causing security and privacy issues,
several enhancements of DNS protocols have been investigated and in-
crementally deployed on the Internet. For instance, there is no guaran-
tee of the authenticity of resource records in the original DNS protocol,
and hence DNS Security Extension (DNSSEC), e.g., [16–18], has been
proposed to protect users from attacks like DNS cache poisoning.

Recently, as increasing demands for privacy on the Internet,
e.g., [19], another design problem of DNS has been drawing atten-
tion, which is the lack of confidentiality and anonymity of exchanged
messages. In the following, we shall summarize recent efforts on DNS
protocols for the problem. Fig. 1 briefly illustrates the relationship
among such DNS protocols we shall explain in the following.

2.1. Encrypted DNS protocols

In the traditional DNS via UDP or TCP of port 53 (Do53), query
and response messages are exchanged between a user and a full-service
resolver in plaintext. This implies that with Do53, the user’s activity
on the Internet can be easily exposed to eavesdroppers on a channel.
Namely, an authority observing the channel between the user and
the resolver can immediately censor DNS messages. Thus for user
privacy, several encrypted DNS protocols have been investigated and
implemented [2–5] to protect DNS messages from being eavesdropped.

In DNSCurve [2] and its successor DNSCrypt [3], a user and a full-
service resolver exchange their public keys and encrypt query and
response messages with the keys. Then the encrypted messages are
transported simply over UDP or TCP in a structured format. On the
other hand, DNS over TLS (DoT) [4,20] is based on the public key
infrastructure (PKI): a secure channel of transport layer security (TLS)
is first established between a user and a full-service resolver, and then
they securely exchange query and response messages over the secure
channel. DNS over HTTPS (DoH) [5] leverages a TLS connection as
the underlying secure channel similarly to DoT, but the DNS message
exchange in DoH is executed through HTTP POST or GET methods over
the secure channel, i.e., in the context of HTTPS. We note that in these
protocols, query and response messages are directly exchanged between
a user (a stub resolver) and a full-service resolver as well as Do53. In
general, users need to utilize public resolvers, e.g., Google, Cloudflare,
and Quad9, instead of ISPs’ resolvers to enable these encrypted DNS
protocols [12].

2.2. Anonymized DNS protocols

The utilization of encrypted DNS protocols helps users protect their
privacy from being exposed to eavesdroppers observing messages on
a transport channel. However, full-service resolvers always learn the
content of DNS query messages of users to search associated resource
3

D

records due to the nature of the DNS mechanisms. Also, recall that users
exchange messages directly with full-service resolvers in the protocols
of Do53 and even encrypted DNS given above. This means that in
such protocols, the target resolver can always associate every query
message uniquely with its issuer’s identity, e.g., the user’s IP address.
Thus several anonymization techniques for DNS queries have been
recently investigated as enhancements of encrypted DNS, i.e., as an
extra layer for anonymization, to decouple the user’s identity from
queries observed at the target resolver.

We start by mentioning the employment of Tor for DNS, i.e., DoH/
DoT over Tor (DoHoT) or DNSCrypt over Tor, which should be the most
traightforward technique for such anonymization of DNS queries. In
hese schemes, we can simply anonymize DNS queries against target
esolvers by leveraging Tor as the message transport channel of any
CP-based1 encrypted DNS protocol much like HTTP messages. This
imple and generic approach based on Tor usually involves a signifi-
ant performance loss due to various reasons such as the overhead of
ultiple-layered encryption, a large volume of traffic at Tor nodes, and

arge round-trip time (RTT) among geographically distributed nodes.
nlike this generic approach based on Tor, there have been proposed

everal anonymization protocols dedicated to DNS as follows.
Oblivious DNS (ODNS) [6] is the first protocol specialized for DNS

nonymization. The protocol introduces an authoritative name server
f a special top-level domain ‘‘.odns’’. Each user generates a query to a
omain of .odns containing an original query in encrypted form, and
very query to the domain reaches the ODNS’s name server. The name
erver decrypts the received encrypted query, dispatches the plaintext
ersion of the original query upstream on behalf of the user, encrypts
he response from the upstream, and sends it back to the user. Then,

full-service resolver located between the user and the ODNS name
erver can be viewed as a relay concealing the user’s IP address from
he name server observing plaintext queries. On the other hand, the
ull-service resolver cannot observe original DNS messages thanks to
he encryption between the user and the ODNS name server.

Although ODNS took an elegant approach compatible with the
tandard Do53, it involves a large RTT since all queries must be
orwarded to the ODNS’s authoritative name server. Oblivious DNS over
TTPS (ODoH) [7–9] has been designed by simplifying the ODNS’s
rchitecture and omitting the compatibility with Do53 and realizes
performance comparable to the standard DoH; The architecture of
DoH introduces its dedicated network node called oblivious proxy

hat just relays DNS messages encrypted between a user and a target
esolver. Additionally in ODoH, the target resolver is allowed to be
eparated into two nodes: A (Do53) full-service resolver and an en-
ryption/decryption terminal called oblivious target, where the oblivious
arget sends decrypted queries to the resolver on behalf of the user.
nonymized DNSCrypt (ADNSCrypt) [10,11] has been designed under

he concept fundamentally the same as ODoH from the viewpoint of

1 Tor supports only TCP. Thus, TCP-based DNSCrypt is employed for
NSCrypt over Tor.
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Fig. 2. Illustration of potential problems related to collusion between relays and target resolvers in existing relay-based schemes for user anonymity, considering the perspective
of relay operators.
its architecture, i.e., leveraging an ADNSCrypt-dedicated relay node to
hide the user’s identity from the encryption-enabled target resolver.
The architectural difference between ADNSCrypt and ODoH is only the
existence of channel encryption based on TLS (HTTPS). We can see that
an ODoH relay, i.e., oblivious proxy, simply terminates a TLS channel
from a user and forwards encrypted DNS messages upstream over
another TLS channel to the oblivious target much like an HTTPS proxy.
On the other hand, encrypted messages in ADNSCrypt are transported
directly over UDP or TCP.

In ODoH and ADNSCrypt, a user selects a single relay through which
every encrypted DNS message to and from the user is routed. This
relay effectively conceals the user’s IP address from the observation of
the target resolver, thereby decoupling the user’s IP address from DNS
queries. As mentioned in [9], user anonymity remains intact unless the
chosen relay colludes with the target resolver.

2.3. Potential problem of collusion in existing anonymized DNS protocols

The deployment scenarios of ODoH relays, as discussed in [9],
often involve operators of existing public resolvers. In the case of
ADNSCrypt, relays are also primarily operated by individual entities,2
akin to Tor relays, which may be unknown to users. Consequently, the
user’s anonymity in both of these schemes relies solely on third parties,
and users must place unconditional trust in these entities to preserve their
anonymity. It is worth noting, however, that such unconditional trust
may not always be guaranteed, especially when considering big players
and unknown operators providing public resolvers.

Additionally, it is important to recognize an implicit assumption in
ODoH and ADNSCrypt concerning the mixing of queries, c.f. Table 1,
at relays.: The chosen relay is utilized by multiple users, ideally a large
number of them. This requirement ensures that the relay’s identity, such as
its IP address, is not uniquely linked to an individual user’s identity.

From these implications, we can identify potential concerns regard-
ing collusion between a relay and a target resolver, summarized in
Fig. 2, based on the types of relay operators:

(1) Using a public relay: This is the most common scenario in existing
schemes, where a public relay is expected to serve multiple
users. In such cases, users must place unconditional trust in the
relay’s operator, as previously stated.

2 c.f., the list of public DNSCrypt relays: https://github.com/DNSCrypt/
dnscrypt-resolvers/blob/master/v3/relays.md in [21].
4

(2) Using a shared relay: Even when opting for a shared relay operated
by another user, concerns related to public relays persist. Choos-
ing a relay operated by a different entity does not eliminate the
risk of potential surveillance, as the selected relay could still
collude with the full-service resolver. In essence, placing uncon-
ditional trust in such a third-party entity remains a necessity for
the user.

(3) Using a private relay: The only way to alleviate concerns related
to public or shared relays is to choose and dedicate a relay
trusted by each user. However, this approach proves completely
impractical due to the risk of uniquely binding the chosen relay’s
identity with the user’s identity by the target resolver.

In the subsequent section, we shall introduce a new anonymized
DNS protocol specifically crafted to tackle these concerns and mitigate
the risk of surveillance, even in cases of collusion on the Internet.

Remark 1. The problems given here might not happen in DoHoT
and DNSCrypt over Tor due to the nature of Tor. However, it involves
incredible performance degradation as we stated in Section 2 and will
demonstrate in Section 6.2, and it is not a realistic approach for real-
time processing in DNS-like systems. Indeed DNS-specific relay-based
schemes have significantly outperformed a Tor-based scheme. Hence,
we focus on the problem of collusion in the DNS-specific relay-based
schemes.

3. Problem formulation

In Section 2.3, we mentioned the potential problem of collusion
in existing anonymized DNS protocols. This section formally defines
the assumed environment and the problem of the anonymity of DNS
messages, which this paper will try to solve.

Firstly, we introduce formal assumptions of the network considered
in the following sections. Most parts of our assumptions are almost
the same as those in ODoH [7–9] and ADNSCrypt [10,11]. Assume
that a user will use a public resolver as a full-service resolver such as
Google DNS and Quad9, and that multiple (ideally large number of)
users join the network. Also, assume that there are network nodes
called relays that simply forward incoming encrypted DNS messages
upstream or downstream. As in ODoH and ADNSCrypt, relays are
semi-honest, i.e., they work correctly but they may try to observe the
content of messages. Hence, to avoid relays from observing messages,

https://github.com/DNSCrypt/dnscrypt-resolvers/blob/master/v3/relays.md
https://github.com/DNSCrypt/dnscrypt-resolvers/blob/master/v3/relays.md
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Fig. 3. Key features (1), (2), and (3) of 𝜇ODNS in an exemplary scenario, where each feature corresponds to features (1), (2), and (3) enumerated in Section 4. This example
supposes that user 𝐴 issues queries 𝑄1, 𝑄2, and 𝑄3, which are routed towards the full-service resolver 𝑋 through several relays, 𝑅𝐴, 𝑅𝐵 , and 𝑅𝐶 , along their path.
the user exchanges DNS messages with the target resolver encrypted in
an end-to-end manner. This paper mainly focuses on attackers observ-
ing messages at public resolvers and relays, and we do not consider
wiretappers who observe transit channels.

In addition to the above assumptions inherited from those in ODoH
and ADNSCrypt, this paper supposes that for a user, a relay operated
by another entity can collude with the public resolver. Also, suppose that
the location of the colluded relay(s) is unknown to the user. Here
we suppose, as a realistic assumption, that a tiny subset of relays
potentially colludes with the target resolver. Unlike the settings of
ODoH and ADNSCrypt, we do NOT assume relays are unconditionally
trusted by a number of users. This means that, for example, even if a
relay is trusted by a user, it is NOT usually trusted by others.

The problem we aim to address in this paper is how to maintain user
anonymity in DNS even in the severe environment we assumed above.
In this environment, each user should be able to exchange encrypted
DNS messages with a targeted public resolver in a manner that prevents
the resolver from identifying the user based on received messages and
information provided by colluding relays. To achieve this, our aim is
to design a scheme that practically conceals the user’s identity from
the target resolver in the assumed environment. In developing such a
scheme, we also strive to minimize performance degradation and attain
performance levels comparable to ODoH and ADNSCrypt.

4. Overview of 𝝁ODNS

The previous section has assumed a severe environment where
an unknown subset of relays has colluded with public resolvers. The
design goal of our scheme, 𝜇ODNS (Mutualized Oblivious DNS), is to
practically anonymize each user’s DNS message in the environment.
To achieve the goal, 𝜇ODNS is designed as a relay-based scheme
leveraging multiple hops of relays with several key features summarized
in Fig. 3. Our scheme takes an approach that is analogous to the private
relay depicted in option (3) of Fig. 2 and explained in Section 2.3.
Namely, we suppose that other than potentially-colluded relays in the
network, every user (or every organization of a set of users) has at least
one trusted instance of relays, e.g., a relay deployed by himself. By
fully and mutually utilizing such a dedicated and trusted relay of each
user, our scheme realizes collusion resistance and protects the user’s
identity from being leaked to resolvers. Note that we do not limit the
5

network to exclusively comprise users’ trusted relays. We permit the
inclusion of public and shared relays that serve multiple-hop messages,
corresponding to options (1) and (2) in Fig. 2, i.e., relays that do not
belong to 𝜇ODNS users. In the following, we shall describe the key
features of our scheme and briefly explain how it achieves anonymity
against relays colluding with target resolvers.

(1) Employment of a user’s dedicated relay(s) as his next-hop: Essentially,
in this scheme, every DNS query message issued by a user is routed to
the target resolver through one or more relays, involving multiple hops.
The first key feature of 𝜇ODNS is to require each user to select their
dedicated relay as their next-hop. Alternatively, the user can become
their trusted relay, or opt for a fully-trusted shared relay provided
by their organization, in contrast to using public relays. The use of a
dedicated and trusted relay as the next-hop simply precludes collusion
between the target resolver and a node that possesses direct knowledge
of the user’s IP address.

Remark 2. Notably, this concept of the dedicated next-hop resem-
bles the entry guard concept in Tor [13]. In Tor, an entry node of a
Tor circuit is chosen from relatively trusted (stable and long-running)
nodes, and it is fixedly used for a period to hide the user’s identity from
randomly-chosen subsequent nodes.

(2) Mutually sharing the user’s dedicated relays to mix query messages: As
we mentioned in Section 3, the identity of the user is uniquely associ-
ated with his dedicated relay in the use of a single relay, i.e., ODoH and
ADNSCrypt, since the relay dedicated to a user uniquely couples with
the user himself. Even in the case of multiple relays, this occurs as well
when a hop after the dedicated next-hop of the user has colluded with
the target resolver. Hence the second key feature designed in 𝜇ODNS
is to enforce the dedicated next-hop of a user to accept incoming
messages from other relays or resolvers and forward them in addition
to DNS messages from/to the user. Namely, users mutually share and
leverage their dedicated relays each other as hops after their next-
hop. This allows the next-hop of a user to mix query messages, c.f.,
Table 1, from its user with ones from other relays. Thus this feature
makes it difficult for other relays receiving messages from the next-
hop to correctly identify the user’s messages. Namely in our concept
of 𝜇ODNS, when one shares its resource, i.e., allowing one’s dedicated
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relay to forward messages issued by others, the privacy of one’s identity
is protected.

(3) Randomization of subsequent hops by the user: To fully leverage
the first and second features to hide the user’s identity, the choice
of relays after the next-hop is quite important. Consider a scenario
where the relays involved in receiving/sending messages to/from the
dedicated relay have been fixed, and unfortunately, all of them have
colluded with the target resolver. In such a case, the user’s messages
could potentially be easily identified at the target resolver. This might
be unrealistic in general but could be realistic if the target resolver
selectively increases colluded nodes when the route is always fixed.
Thus to disallow such a case and minimize the identity leakage even
if we meet the case, we introduce the third key feature: The user
randomizes choices of hops after his dedicated relay. This means that
the number of subsequent hops, the selection of hops, and the order
of hops are all randomized. That is, the 𝜇ODNS allows messages to be
onveyed via one or more relays or directly to the target resolver after
he dedicated next-hop. Note that in our motivation and in the nature
f DNS, only the origin of a query message must be anonymized to
ts target resolver and its colluded relays, but the target resolver itself
s NOT required to be hidden to relays. Hence in choices of subsequent
elays, the direct forwarding from the dedicated relay to the resolver is
lso allowed like ODoH [7–9] and unlike Tor [13].

These three key features are also illustrated in Fig. 3. In an exem-
lary scenario depicted in Fig. 3, user 𝐴 initiates three query messages,

namely 𝑄1, 𝑄2, and 𝑄3 directed towards the full-service resolver 𝑋.
hese messages follow a multi-hop path through several relays, includ-

ng 𝑅𝐴, 𝑅𝐵 , and 𝑅𝐶 . Key Feature (1) ensures that relay 𝑅𝐴 is the user’s
rusted relay and is consistently selected as the first hop for all queries.
urthermore, 𝑅𝐴 not only handles messages originating from 𝐴 but also
essages forwarded from other relays, such as 𝑅𝐵 , as facilitated by key

eature (2). Key Feature (3) randomizes the path for each query 𝑄𝐴,
𝐵 , and 𝑄𝐶 to 𝑋, by 𝐴 as shown in Fig. 3.

Additionally from the mechanical viewpoint, we see that in 𝜇ODNS,
very DNS query message conveyed on a path includes its forwarding
nformation only about subsequent relays, and the origin of paths is
idden from the target resolver. For instance in Fig. 3, a query message
3 on the path between 𝑅𝐴 and 𝑅𝐶 includes forwarding information

hat will be forwarded to 𝑋 after 𝑅𝐶 and does not include previous
aths, i.e., 𝐴 to 𝑅𝐴. That is, each relay simply strips the previous hop’s
nformation of an incoming query message. But as with ODoH and
DNSCrypt, although DNS response messages from the target resolver

nclude no information of their returning path, they are correctly
eturned to the user just by trailing L4 connections3 between adjacent
odes. We thus see that subsequent relays and target resolvers do not
earn the information on the origin of paths from DNS messages as
etwork packets.

Fig. 4 illustrates an exemplary scenario of the 𝜇ODNS showcasing
ow it preserves user anonymity in an environment where a relay
ubsequent to the user’s dedicated relay colludes with a target resolver.
n this example, user 𝐴 issues two query messages, referred to as Query
’s, directed to the full-service resolver 𝑋. One of these queries is

outed through 𝑅𝐴 and then 𝑅𝐵 to reach 𝑋 (involving two relays),
hile the other traverses 𝑅𝐴, 𝑅𝐵 , and then 𝑅𝐶 before reaching 𝑋

involving three relays). Simultaneously, user 𝐵 issues two queries,
eferred to as Query 𝐵’s, towards 𝑋, following paths 𝑅𝐴 → 𝑋 and
𝐶 → 𝑋. Consider a scenario in which relay 𝑅𝐶 colludes with 𝑋,
ttempting to identify the source of received queries. However, for
𝐶 , there is no guarantee that any queries forwarded from 𝑅𝐵 origi-
ated from user 𝐵 or 𝐴. This uncertainty arises because 𝑅𝐵 conceals
he previous hops of outgoing messages, mixes queries from multiple
ources, and randomizes query paths before 𝑅𝐵 , thanks to the key

3 UDP/TCP connections are managed at each node.
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features of 𝜇ODNS. Consequently, the origins of received queries cannot
be uniquely identified at 𝑅𝐶 , and the same holds for those received
from 𝑅𝐴 at 𝑋.

A detailed discussion and analysis of the security of our scheme
will be given in Section 6.1.1. In the next section, we introduce a
proof-of-concept implementation of 𝜇ODNS with the key features.

5. Proof-of-concept of 𝝁ODNS

As proof-of-concept (PoC) of 𝜇ODNS, we have developed practical
instances of 𝜇ODNS based on existing relay-based anonymized DNS
protocols, namely, ADNSCrypt [10,11] and ODoH [7–9]. These in-
stances consist of client proxy modules that translate Do53 to 𝜇ODNS
and relay modules.

For the extension of ADNSCrypt, we forked and modified the exist-
ing open-source software of client proxy4 and relay.5 The implemented
client and relay modules are available on GitHub.6 On the other hand,
for the ODoH-based implementation, we built the client and relay
modules from scratch, also available on GitHub.7 It is important to
note that in our PoC, the target resolvers are fully compatible with
standard ADNSCrypt and ODoH. Therefore, we deployed existing im-
plementations of ADNSCrypt and ODoH servers8 as the target resolvers
in our PoC for 𝜇ODNS. For the sake of simplicity, we will now refer to
our PoC protocols and implementations of 𝜇ODNS as 𝜇ADNSCrypt for
the ADNSCrypt-based implementation and 𝜇ODoH for the ODoH-based
one.

In the following subsections, we will provide detailed protocols for
𝜇ADNSCrypt and 𝜇ODoH, along with brief introductions to their imple-
mentations. To facilitate the reader’s understanding, we will start with
a concise explanation of the original ADNSCrypt and ODoH protocols.
Subsequently, we will elucidate how these original protocols have been
adapted to realize the concept of 𝜇ODNS. Table 2 offers a succinct com-
parison of protocol specifications for ADNSCrypt, ODoH, 𝜇ADNSCrypt,
and 𝜇ODoH, covering aspects such as the underlying protocol, protocol
identification at relays and resolvers, route description of queries, and
the number of relays. These details will be elaborated upon in the
following subsections.

5.1. Protocols of existing relay-based anonymized DNS

5.1.1. ADNSCrypt protocol
In the ADNSCrypt protocol [10,11], a user and a target resolver

exchange all encrypted DNS messages, i.e., queries and responses, via
a single relay specified by the user. The message encryption is done in
the end-to-end manner of DNSCrypt version 2 protocol [29,30] between
the user and resolver, and the relay only passively forwards messages
upstream and downstream.

Query messages in ADNSCrypt simply consist of two parts:
ADNSCrypt header and ANDSCrypt payload. The header part lets a
relay know the target resolver. The payload part is exactly the en-
crypted query in the non-anonymized DNSCrypt v2, and only this part is
forwarded to the target resolver by the relay. Thus from the viewpoint
of the target resolver, the relay is regarded as a user in the context of

4 dnscrypt-proxy: https://github.com/DNSCrypt/dnscrypt-proxy [22].
5 encrypted-dns-server: https://github.com/DNSCrypt/encrypted-dns-

erver [23].
6 𝜇ADNSCrypt client: https://github.com/junkurihara/dnscrypt-proxy-
odns [24], and relay: https://github.com/junkurihara/encrypted-dns-

erver-modns [25].
7 𝜇ODoH client: https://github.com/junkurihara/doh-auth-proxy [26], and

elay: https://github.com/junkurihara/doh-server [27]. The repository of relay
mplementation is actually the fork of an existing ODoH target implementation
doh-server [28]), but its relay function was completely built from the scratch.

8 ADNSCrypt server: https://github.com/DNSCrypt/encrypted-dns-

erver [23], ODoH server: https://github.com/DNSCrypt/doh-server [28].

https://github.com/DNSCrypt/dnscrypt-proxy
https://github.com/DNSCrypt/encrypted-dns-server
https://github.com/DNSCrypt/encrypted-dns-server
https://github.com/junkurihara/dnscrypt-proxy-modns
https://github.com/junkurihara/dnscrypt-proxy-modns
https://github.com/junkurihara/encrypted-dns-server-modns
https://github.com/junkurihara/encrypted-dns-server-modns
https://github.com/junkurihara/doh-auth-proxy
https://github.com/junkurihara/doh-server
https://github.com/DNSCrypt/encrypted-dns-server
https://github.com/DNSCrypt/encrypted-dns-server
https://github.com/DNSCrypt/doh-server
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Fig. 4. An exemplary scenario of three parties case in 𝜇ODNS, where the user 𝐴 issues DNS query messages (Query 𝐴’s) routed as 𝑅𝐴 → 𝑅𝐵 → 𝑋 and 𝑅𝐴 → 𝑅𝐵 → 𝑅𝐶 , and user 𝐵
issues ones (Query 𝐵’s) routed as 𝑅𝐴 → 𝑋 and 𝑅𝐶 → 𝑋. The resolver 𝑋 cannot see that the origin of messages received from 𝑅𝐴 is 𝐵, and also cannot identify origins of messages
from 𝑅𝐶 even by utilizing the colluded spy 𝑅𝐶 .
Table 2
Protocol specification comparison of existing single relay-based DNS anonymization, and 𝜇ODNS instances as their extension,
where in 𝜇ADNSCrypt and 𝜇ODoH, the number of relays following the user’s next-hop, denoted as 𝛼, is chosen randomly.

Underlying Identification at Description of # Relays Extended
protocol relays and resolvers query’s route from

ADNSCrypt [10,11] UDP/TCP Dedicated header Dedicated header 1 -(Section 5.1.1) (Target)

ODoH [6,7] HTTPS URL path, URL query string 1 –(Section 5.1.2) HTTP header (Target)

𝜇ADNSCrypt UDP/TCP Dedicated header Dedicated header 1 + 𝛼 ADNSCrypt(Section 5.2.1) (Target and relays) (𝛼 ≥ 0)

𝜇ODoH HTTPS URL path, URL query string 1 + 𝛼 ODoH(Section 5.2.2) HTTP header (Target and relays) (𝛼 ≥ 0)
the non-anonymized DNSCrypt v2. The structure of the header part is
given as follows9:

ADNSCrypt header

∶= |Anonymized query magic| |192.168.1.1|
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Target address

|8443|
⏟⏟⏟

Target port

, (1)

where the anonymized query magic is a special constant indicating
the message is an ADNSCrypt query. The user simply dispatches this
query message over UDP or TCP to its specified relay instead of the
target resolver. The response to the query is structured exactly in
the form of the non-anonymized DNSCrypt response, and it is just
inversely forwarded from the resolver to the user via the relay with
no modification on the path.

5.1.2. ODoH protocol
In ODoH [6,7], DNS query and response messages are encrypted

in an end-to-end manner between a user and a target resolver exactly
similar to the ADNSCrypt protocol. The encrypted query and response
are transmitted as HTTP request and response messages through a
relay specified in a request URL. The architectural difference between
ODoH from ADNSCrypt is only the employment of the secure channel,
i.e., HTTPS, as the transmission channel of encrypted messages.

Specifically, the user encrypts a plaintext query message of Do53
by leveraging the hybrid public key encryption (HPKE) [31–33] and
sends the encrypted query to a relay using the POST method as an
HTTP request message. Then the request URL to the relay contains the

9 Values in target address and port are just examples.
7

information on the target resolver in the form of a query string with
parameters: targethost and targetpath. The relay that receives
such an HTTP request composes a new URL from the request URL given
by the user and dispatches another HTTP request with the new URL to
the target resolver. Note that each HTTP request has a specific header
indicating its content-type is an encrypted query.10 For instance, when
a user sends an encrypted query as an HTTP request with a URL

https://relay.example/proxy?
targethost=target.example

&targetpath=/dns-query, (2)

the relay just forwards the received request to the target resolver by
replacing its request URL with

https://target.example/dns-query,

via the HTTP POST method. The response to the query is also encrypted
with HPKE at the target resolver and sent back as an HTTP response to
the user through the relay.

5.2. Protocols of 𝜇ADNSCrypt and 𝜇ODoH

Both in 𝜇ADNSCrypt and 𝜇ODoH, the target resolvers are respec-
tively still the DNSCrypt v2 resolver and the ODoH target, and hence
our PoC protocols are compatible with existing (A)DNSCrypt and ODoH
infrastructures. However, in order to realize the concept of 𝜇ODNS, we
rebuilt the construction and format of query messages and modified the
relaying protocol of ADNSCrypt and ODoH. In the following, we shall
describe such modifications to each protocol.

10 Content-Type: application/oblivious-dns-message.
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5.2.1. 𝜇ADNSCrypt protocol overview
A 𝜇ADNSCrypt query message is composed of two parts:

𝜇ADNSCrypt header and payload. The payload part is exactly an
encrypted query of DNSCrypt v2 as an inherited structure from the
original ADNSCrypt. On the other hand, since each query message
itself has to describe the path on which it will follow to the target
resolver, the header part is designed so as to include an ordered list of
subsequent relays and a target resolver by extending (1). In particular,
the 𝜇ADNSCrypt header is structured as follows.

𝜇ADNSCrypt header ∶= |𝜇ADNSCrypt query magic| |𝑛|
⏟⏟⏟
# nodes

|192.168.1.1||8443|
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Node 1 address and port

|192.168.2.4||8443|
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Node 2 address and port

…

… |192.168.128.32||8443|
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Node 𝑛 (target resolver) address and port

, (3)

here the 𝜇ADNSCrypt query magic is a constant indicating the
ADNSCrypt query message much like the anonymized query magic in
DNSCrypt. This simply describes the path information by the number
f nodes, 𝑛, and an ordered list of 𝑛 tuples comprising IP addresses
nd ports of intermediate relays and a target resolver. Notably, this in-
ormation excludes the user’s trusted next-hop. After the user’s trusted
ext-hop, the query message is routed in order from the beginning of
he list and finally reaches the target resolver specified as the end of
he list. We note here that the intermediate relays, their number, and
heir order are chosen by the user at random as explained in Section 4.

When a relay including the user’s next-hop receives a message
tarting with the 𝜇ADNSCrypt query magic, it first checks the next node
o which the relay forwards the message from the first element of the
ist. Then, it composes the updated query by decrementing the number
f subsequent nodes and peeling off the first element of the list, and
t sends the updated query out to the next node. Note that every relay
orks in this manner for the received 𝜇ADNSCrypt query message with
> 1. On the other hand, if 𝑛 = 1, the list includes only the information
f the target resolver of DNSCrypt v2, and hence the relay that receives
uch messages just strips off all the header part and simply dispatches
nly the payload part, i.e., DNSCrypt v2 query, to the target resolver.
s in the ADNSCrypt, the response to the query is that of the vanilla
NSCrypt v2 and is inversely forwarded from the resolver to the user.

.2.2. 𝜇ODoH protocol overview
The design principle of 𝜇ODoH is the same as the 𝜇ADNSCrypt.

amely, every plaintext query message itself is composed and en-
rypted in the manner of the original protocol, ODoH, and the path
rom a user to a target resolver is randomly configured for the message.
n 𝜇ODoH, we describe the randomized list of nodes that a query
essage will visit in the query string of the HTTP request URL instead

f the ordered list of nodes in 𝜇ADNSCrypt header. In particular, we
ntroduced new parameters in the query string of the URL, relay-
ost[𝑖] and relaypath[𝑖] (𝑖 ≥ 1), in addition to the targethost
nd targetpath of the original ODoH. For instance, along with an
TTP header specifying the content type as an encrypted query, a user
omposes a 𝜇ODoH query in the form of an HTTP message with the
ollowing URL, much like (2).

ttps://relay.example/proxy?
relayhost[1]=1.relay.example
&relaypath[1]=proxy

…

&relayhost [𝑛 − 1]=n-1.relay.example
&relaypath [𝑛 − 1]=proxy
&targethost=target.example

&targetpath=/dns-query, (4)
8

here a tuple (relayhost[𝑖], relaypath[𝑖]), 𝑖 ∈ {1,… , 𝑛} specifies
he URL of the 𝑖th relay that the query will visit after the host re-
ay.example, much like targethost and targetpath explained

n Section 5.1.2.
A relay host that receives an HTTP request with the 𝜇ODoH request

RL determines the next node, i.e., URL host and path, by parsing the
uery string: It is a relay specified by relayhost[1] for URL host and
elaypath[1] for URL path if these parameters exist; Otherwise, it

s the target resolver specified by targethost and targetpath as
ith ODoH. Unless the next node is the target resolver, the relay also
pdates the query string by removing relayhost[1] and relay-
ath[1] and decrementing 𝑖 in relayhost[𝑖] and relaypath[𝑖]

or all 𝑖 if they exist. Then it forwards the HTTP request to the next node
ith the updated request URL via the POST method. This means that

he final relay just dispatches an HTTP request to the target resolver
ith the URL composed of the target resolver’s hostname and URL
ath in exactly the same manner as relays in ODoH, oblivious proxies.
hus the response to the query is the same as that in ODoH, and it is
orwarded from the resolver by trailing the path back to the user via
elays.

.3. Implementations of 𝜇ADNSCrypt and 𝜇ODoH

Here we explain our PoC implementations for 𝜇ADNSCrypt and
ODoH. For both protocols, we implemented client modules converting
o53 plaintext queries to 𝜇ADNSCrypt and 𝜇ODoH ones, and relay
odules forwarding encrypted DNS messages in the network. We note

hat unlike protocol specifications given in Section 5.2, the fundamental
eatures of their implementations are identical for both protocols. Thus
e explain our implementations by focusing on their features regardless
f the protocol specification.

.3.1. Client implementation
Our client implementation for 𝜇ADNSCrypt [24] is based on

nscrypt-proxy [22], and that for 𝜇ODoH [26] is designed from scratch.
n these client implementations, 𝜇ADNSCrypt and 𝜇ODoH queries ex-
lained in Sections 5.2.1 and 5.2.2 are generated from Do53 queries for
ome given parameters such as lists for candidates for the user’s next-
op, i.e., the user’s trusted and dedicated relays, and available inter-
ediate relays subsequent to the next-hop. Specifically, the following

onfiguration options are introduced to realize our PoC protocols.

List of available targets and relays with flag]: To build the path in-
ormation specified in (3) and (4) for every query, client modules must
ave knowledge of locations of relays and target resolvers, i.e., socket
ddresses in 𝜇ADNSCrypt and URLs in 𝜇ODoH. Hence the client con-
iguration of our implementations contains two static lists of node
ocations: One is about targeted resolvers of the underlying protocol,
.e., DNSCrypt v2 or ODoH; The other is about available relays support-
ng 𝜇ODNS relaying protocols described in Sections 5.2.1 and 5.2.2.11

ere we note that every available relay in the list can have a ‘flag’
ndicating a candidate of the next-hop. Namely, the user’s trusted relays
re explicitly specified in the list in our client implementation.

Maximum and minimum number of relays]: For each query message, the
umber of relays after the next-hop, i.e., 𝑛 − 1 in (3) and (4), are
andomly fixed within the range specified by the user. The range is
imply given by parameters of the maximum and minimum allowed
umbers of relays.

By the above options, our client implementations work as follows:
hen a Do53 query is given from a user, the client first chooses a
lagged relay candidate as the user’s trusted next-hop from configured
ists and simultaneously generates an encrypted query of DNSCrypt v2

11 For the client of 𝜇ADNSCrypt [24], lists can be hosted online, e.g., [34],
as the vanilla dnscrypt-proxy.
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or ODoH from the plaintext query. Then, it constructs the query’s path
information as (3) and (4) by selecting a target DNSCrypt v2 or ODoH
resolver and randomly choosing relays from the rest of the listed relays
regardless of the next-hop flag. Finally, it dispatches the generated
query to the next-hop flagged relay chosen at first. Here we should
note that our client implementations generate queries’ path information
avoiding any loop path, i.e., duplicated selection of relays.

5.3.2. Relay implementation
The second piece of our implementation is the relay function sup-

porting the relaying protocols described in Sections 5.2.1 and 5.2.2. The
𝜇ADNSCrypt relay implementation [25] is realized by extending the
relay function of ADNSCrypt in encrypted-dns-server [23]. On the other
and, the 𝜇ODoH relay implementation [27] is realized as the one built
rom scratch as a new module in doh-server [28]. To correctly serve
ADNSCrypt and 𝜇ODoH queries, the following configuration option is

ntroduced.

Overload and loop avoidance]: At a relay, each incoming query mes-
age explicitly indicates subsequent relays where the message will visit
fter the relay. If the number of such relays is unnecessarily large,
elays might be severely overloaded, and hence such cases should be
uppressed. Towards this end, our relay implementation checks the
umber of such subsequent relays indicated in each incoming query
nd drops the one having more hops than the predefined threshold. It
lso checks duplicated relays, i.e., loop, in the path of relays indicated
n each incoming query, and drops it as well when a loop is detected.12

Our implementations can serve not only 𝜇ADNSCrypt and 𝜇ODoH
ueries but also those of their underlying anonymized DNS protocols,
DNSCrypt and ODoH. We also note that in our relay implementations,

he backward path from the target resolver is adequately managed
y the socket connection of UDP/TCP at each relay in a hop-by-hop
anner.

In the next section, we will give discussions on 𝜇ODNS from several
iewpoints considering the deployment of 𝜇ADNSCrypt and 𝜇ODoH as
oC but practical instances of 𝜇ODNS. We shall also evaluate the actual
erformance degradation in 𝜇ODNS caused by multiple relays by our
mplementation.

. Evaluation and discussion

Considering the deployment of realizations of 𝜇ODNS, e.g.,
ADNSCrypt and 𝜇ODoH, we must consider its security and privacy.
his section first provides discussions on such considerations. We
hen introduce a preliminary evaluation of the performance of 𝜇ODNS
sing our PoC implementation in terms of the round-trip time (RTT)
n the Internet. We moreover discuss some realistic scenarios of the
eployment of 𝜇ODNS.

.1. Security and privacy

.1.1. Protocol aspect
The concept of 𝜇ODNS is simply regarded as an extension of sin-

le relay-based schemes, i.e., ADNSCrypt and ODoH, to a multiple
elay-based one. Namely, we see that by omitting the assumption
f leveraging the user’s trusted relays as his next-hop, the 𝜇ODNS
uarantees at least the same security and privacy as ADNSCrypt and
DoH.

To have resistance against the collusion of untrusted relays with a
arget resolver, as explained in Section 4, we additionally suppose that
sers leverage their trusted and dedicated next-hop relays. The relays
erve not only queries from their directly-connected users but also ones

12 Loop avoidance is not necessary as long as only our client implementa-
ions in Section 5.3.2 are used.
9

incoming from other relays as shared or public relays. In the following,
we will analyze the security and privacy of 𝜇ODNS in detail, specifically
how it protects the user’s privacy when dealing with untrusted relays.

First, recall that users are unaware of the locations of colluding
relays. In Section 4-(3), we previously mentioned a specific scenario in
which a user’s next-hop unfortunately and exclusively handles queries
originating from or destined for colluding nodes. As we have also
explained, the likelihood of such an occurrence is significantly reduced
due to the key feature (3), which involves path randomization deployed
by both the user and other non-colluding users. This implies that
with each subsequent relay, namely the next-hop of other users in
the query’s path, the probability of encountering such a situation is
minimized as well. Therefore, we will consider the scenario in which
each relay handles queries forwarded to and from multiple relays,
encompassing both non-colluding and potentially colluding ones. We
can then categorize this situation into two cases, as illustrated in Fig. 5:
(1) a scenario where the relay immediately following the user’s next-
hop colludes, and (2) a situation in which collusion does not occur at
the relay following the next-hop.

Case (1): For a query and its selected path, consider a scenario where
a relay in direct communication with the user’s next-hop on
the path has colluded with a target resolver. Then, we see
that as briefly explained in Section 4, there is no guarantee
that the received query was sent by the user behind the ob-
served relay. This uncertainty arises because the relay handles
queries forwarded from multiple non-colluding relays, making it
impossible to uniquely attribute the query to any specific user.

However, this uncertainty becomes compromised when we in-
troduce an additional assumption where the colluding relay
attempts to estimate the number of relays chosen by the user
for the query. In this stronger situation, the target resolver could
potentially ascertain the location of the query’s origin, specifi-
cally hidden behind the observed next-hop, once it accurately
estimates the number of relays. For instance, for a received
query, let 𝑛 be the total number of relays set by a user, and
suppose that 𝑛 is known to the colluding relay. Then, if the
remaining path described in the query consists of 𝑛 − 2 relays
following the colluding relay, it can be precisely identified as
originating from a user concealed behind the previous hop,
i.e., the user’s trusted next-hop. Conversely, for queries sent by
other users, the number of remaining relays is always less than
or equal to 𝑛 − 3.

It is important to note that the key feature (3), as outlined in
Section 4, incorporates the randomization of path elements, in-
cluding relay selection, order, and number. This randomization
significantly complicates any attempts at such estimation of the
number of relays. Consequently, 𝜇ODNS establishes collusion
resistance in a probabilistic manner. Furthermore, we also see
that the randomization feature ensures that the situation of
collusion occurring at the relay immediately following the user’s
next-hop cannot consistently occur.

ase (2): For a query and its selected path, consider a situation where
a colluding relay or relays exist along the path, but the next
relay following the user’s next-hop is not involved in collusion.
In this situation, unlike case (1), the colluding relays are un-
able to uniquely identify the origin of the query, as long as
non-colluding relays on the path handle queries received from
multiple non-colluding relays and users. This guarantee remains
in place even when the colluding relay accurately estimates the
total number of relays set by the user. For example, in Fig. 5-
(2), let 𝑛 represent the total number of relays set by a user
and known to the colluding relay. Then, even if the remaining

path described in the query consists of 𝑛 − 3 relays following
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Fig. 5. Two cases where a colluding relay(s) exists on the selected path for a query: (1) the next relay following the user’s next-hop on the path collude; (2) the next node
following the user’s next-hop does not collude.
the colluding relay, it cannot be guaranteed that the query
originated from the user depicted in Fig. 5-(2).

It is worth noting that when colluding relays accurately estimate
𝑛, the pool of potential query origins may be limited. However,
we see that employing the key feature of path randomization can
make such estimation infeasible to a great extent, as discussed
in case (1).

As the above analyses on both cases, we see that the user cannot
be identified by the target resolver unless specific conditions are si-
multaneously met: For a query, the subsequent relay selected after the
next-hop being colluding, and the correct estimation of the number of
relays. Consider that many entities make relays publicly available in the
system. We claim that in such a situation, the condition is quite rarely
satisfied if subsequent relays, following the next-hop, are randomly
selected from those operated by distinct entities, like the premise of
Tor [13].

As a conclusion of this subsection, we mention the security of
our PoC implementations. Although we have assumed no wiretappers
on transit channels in Section 3, an extra layer of security might be
required. For instance, there may be a case where a certain monitoring
authority employs a middlebox that drops any transit messages con-
veyed to specific relays/resolvers. The 𝜇ODoH messages are exchanged
over HTTPS, and hence the messages could be mixed with and might
not be differentiated from standard HTTPS messages, as with DoH and
ODoH. Moreover, the paths of queries and target resolvers in the URL
cannot be revealed thanks to the TLS even if a wiretapper overhears
messages on a channel between a user and his next-hop relay. On
the other hand, in 𝜇ADNSCrypt, all the connections among relays are
established over a non-secure channel, i.e., no channel encryption like
TLS, and query messages can be identified from their header much like
the underlying DNSCrypt and ADNSCrypt. Thus, considering channel
wiretappers in 𝜇ADNSCrypt, the target resolver and path of relays are
explicitly revealed from an observed query message while the content
of the query itself is encrypted. Therefore, if channel wiretappers
might exist, we should employ an instance of 𝜇ODNS with the channel
encryption for relaying, i.e., 𝜇ODoH, even if we need to pay an extra
cost to establish secure channels.

6.1.2. Deployment aspect
Considering the deployment of instances of 𝜇ODNS, there exist

several considerations to employ the system securely other than the
design of their protocols. Especially, attacks of distributed denial of
service (DDoS) should be one of the most serious problems from the
viewpoint of relay and target resolver operators. For example, we can
consider a case where malicious users issue huge numbers of fake
messages to victim relays or resolvers without revealing their origins
by exploiting the nature of 𝜇ODNS. Thus, we should introduce a certain
extra mechanism against such an attack to protect the system of 𝜇ODNS
for its deployment.

The obvious way to resolve the above concern is to introduce an
authentication/authorization mechanism for message acceptance. That
is, every relay should (1) communicate only with authenticated users as
their next-hop relay and (2) accept messages sent from pre-authorized
10
external relays as a shared or public relay, in the deployment of 𝜇ODNS.
Similarly to (2), (3) target resolvers should accept messages dispatched
only from pre-authorized relays. To this end, we can consider adopt-
ing several existing authentication and authorization approaches. For
instance for (1) user authentication, we can use the mutual TLS, i.e., au-
thentication using client certificates, or utilization of an ID token
of OpenID Connect as a bearer token of OAuth 2.0 in the HTTP
header [35]. Here we should note that by the nature of 𝜇ODNS,
anonymity is still guaranteed even if such user authentication is intro-
duced at the user’s next-hop relay. On the other hand for (2) and (3),
i.e., pre-authorization of relays, we can use a simple allowlist-based ap-
proach much like signed lists of (A)DNSCrypt resolvers and relays [21].
Users can refer to such lists to build appropriate paths for their queries
as with (A)DNSCrypt. But in our context, relays and resolvers also refer
to the lists and use them as allowlists for incoming connections to deny
relaying potentially harmful traffic from unauthorized nodes.

Indeed our PoC implementations have already introduced the above
authentication and authorization mechanisms to avoid attacks causing
DDoS. Specifically, we can use the user authentication based on the
ID token between our client [26] and relay implementations [27] of
𝜇ODoH. Also, our 𝜇ODoH relay implementation supports the allowlist
of connection acceptance based on source IP addresses.

6.2. Performance evaluation

We evaluate the performance of our PoC implementations from the
viewpoint of round-trip time (RTT), i.e., the elapsed time to receive a
response after a query issuance under several relay settings. The archi-
tectural concepts of ADNSCrypt and ODoH are the same as mentioned
in Sections 5.1.1 and 5.1.2, and so for 𝜇ADNSCrypt and 𝜇ODoH. Thus,
we use ADNSCrypt and 𝜇ADNSCrypt for the performance evaluation
since we can expect that the result is the same for ODoH and 𝜇ODoH.
Also, we measure the performance of DNSCrypt over Tor as an instance
of Tor-based anonymization schemes for the performance comparison
with 𝜇ADNSCrypt.

6.2.1. Experimental environment
Table 3 summarizes the environment of our experimentation, where

all the nodes, i.e., a 𝜇ADNSCrypt user, 𝜇ADNSCrypt relays, and a
target DNSCrypt v2 resolver, are deployed on virtual private servers
(VPS) [36] at Tokyo or Singapore. On the other hand, we carefully
chose locations/areas of Tor public relay nodes in order to make our
evaluation fair.

Under the above setting, we measured the RTT from the user’s query
issuance to response retrieval with several choices of 𝜇ADNSCrypt re-
lays or Tor nodes. In each measurement, the user generates a query for
a domain with a random string, <random_string>.example.com,
to disable caching at the target resolver and measure the RTT. We
measured RTTs of ten thousand measurements for each setting of
𝜇ADNSCrypt relays and Tor nodes and evaluated their average, median,
and several metrics. For each setting, we also measured the empirical
cumulative distribution of the difference of RTTs from the median RTT
of the case of the vanilla DNSCrypt, i.e., no relays/nodes between the

user and the resolver.
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Table 3
Environments of our experimentation on (A)DNSCrypt, 𝜇ADNSCrypt and DNSCrypt over Tor.

# of measurements 10,000 times

Target resolver [23] Hosted on ConoHa VPS Tokyo

User [22,24] Hosted on ConoHa VPS Tokyo

(A)DNSCrypt
and 𝜇ADNSCrypt

Relay setting [25] 3 nodes: ConoHa VPS Tokyo
2 nodes: ConoHa VPS Singapore

Relay choices

(1) Random Tokyo 𝑡 relays (𝑡 = 0,… , 3)
(2) Random Singapore 𝑠 relays (𝑠 = 1, 2)
(3) Random Tokyo 1 and then Singapore 1 relays
(4) Random Singapore 1 and then Tokyo 1 relays

DNSCrypt
over Tor Tor node setting Entry nodes: Japan

Refresh Tor circuit every 100 queriesa

Tor node choices
(5) Global middle and exit nodes (No exclusion)
(6) Middle and exit nodes in East Asia and East
South Asiab

a The Tor circuit used for the new connection is refreshed every 100 secs in its setting, and we dispatch a DNS query every
second.
b This setting is done by excluding countries other than cn, hk, jp, kr, tw, kh, tp, id, my, ph, sg, th, and vn in country codes.
In other words, Tor circuits were established with relays located in these countries.
Table 4
Results of the experimental evaluation: Average, median, first and 99th percentiles, and standard deviation on RTT for DNS query/response under several
conditions of intermediate relays between the user in Tokyo and the resolver in Tokyo, expressed in milliseconds. For the setting 6), we additionally
present 0.1st and 0.5th percentiles.

Relays Ave Med 1st% 99th% Std

(A)DNSCrypt
and
𝜇ADNSCrypt

1)

Direct (0 relay=DNSCrypt) 126.3 97.6 9.0 507.9 112.7
Tokyo 1 relay (=ADNSCrypt) 137.0 111.8 11.7 502.7 110.3
Tokyo 2 relays 137.5 113.3 12.6 534.2 109.6
Tokyo 3 relays 136.1 114.2 13.2 519.8 108.7

2) Singapore 1 relay (=ADNSCrypt) 289.8 262.2 161.0 675.7 112.3
Singapore 2 relays 293.9 265.4 161.9 733.7 121.1

3) Singapore relay → Tokyo relay 288.3 258.0 162.2 669.2 113.1

4) Tokyo relay → Singapore relay 215.8 202.5 13.0 644.1 136.4

DNSCrypt
over Tor

5) Global middle and exit nodes 1, 251.2 1, 228.8 786.7 2, 008.0 235.7

6)
Middle and exit
nodes in East/East
South Asia

473.2 461.8
92.1

1, 096.1 203.7(0.5th%: 63.1)
(0.1st%: 38.2)
Fig. 6. Empirical CDF of the difference of RTT from the median value of the case of direct DNSCrypt query/response (no relay), where TYO and SGP respectively mean Tokyo
nd Singapore, 𝑁 of TYO.𝑁 or SGP.𝑁 indicates the number of relays, and 𝑋 of TOR.𝑋 describes the location of intermediate and exit nodes in Tor.
l
a
l
e

For 𝜇ADNSCrypt, we fixed the number of relays chosen, and the user
andomly selected relays of the fixed number from the pool of candidate
elays. In the choice of 𝜇ADNSCrypt relays, we executed four types
f experimentation: (1) With relays located in Tokyo, (2) With relays
11
ocated in Singapore, and (3) and (4) With one relay located in Tokyo
nd another located in Singapore. For DNSCrypt over Tor, we fixed the
ocation of entry nodes to be always in Japan. On the other hand, we
xamined the following two cases of the selection of middle and exit
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nodes: (5) Chosen globally, and (6) Chosen from East and East South
Asia including Japan and Singapore, i.e., geographically near Japan and
Singapore.13

.2.2. Experimental result
Table 4 summarizes the average, median, first percentile, 99th

percentile, and standard deviation of measured RTTs for each type of
experimentation. On the other hand, Fig. 6 illustrates the empirical
cumulative distribution function (CDF) of differences in measured RTTs
from the median RTT of the zero relay case, i.e., the vanilla DNSCrypt
v2 with the median 97.6 ms in Table 4. Below we shall explain the
results for each setting (1)–(6).

(1) For measurements with relays in Tokyo, we see that from measured
metrics in Table 4, the employment of two or more relays does
not impair the performance in terms of the RTT by compar-
ing with the case of direct connection (zero relays), i.e., the
vanilla DNSCrypt v2, and that of one relay, i.e., ADNSCrypt. The
degradation of the RTT by using the multiple relays is within
10–17 ms in the average and median of RTT. We also see that
the distribution of difference of RTTs is not affected by the
employment of multiple relays as shown in Fig. 6.

(2) Also for measurements with relays in Singapore, the result with
one relay is exactly similar to the case of two relays as shown
in Table 4 and Fig. 6. The performance degradation in RTTs
is about 170 ms in the average and median. Also, we see that
the distribution of difference of RTTs is not affected by the
employment of multiple relays as (1).

(3) and (4) For measurements with a combination of relays from
Tokyo and Singapore, we see that their performance in the RTT
is worse than that of (1) but comparable to (2).

(5) For measurements of DNSCrypt over Tor with globally chosen
middle and exit nodes, the performance in RTT is significantly
degraded from the case of direct communication as shown in
Table 4, which is larger than 1, 000 ms both in the average and
median values. Of course, this is obvious since Tor nodes are
widely located on the earth in this case. However, even the first
percentile of the RTT is greater than any other case by more
than 500 ms.

(6) For measurements of DNSCrypt over Tor with middle and exit
nodes located in East and East South Asia, the performance in
RTT is much better than (5) on all metrics. We note that there
exist cases where Tor circuits are established only with nodes
near Japan (or in Japan) sometimes in a probabilistic manner.
But all the first, 0.5th, and even 0.1st percentiles of the RTT are
still larger than the first percentiles of 𝜇ADNSCrypt with three
Tokyo relays by about 25–60 ms.

6.2.3. Consideration from the experimental result
As easily expected, we can view that from the experimental results,

the performance in terms of RTT simply and mostly depends on the
geographic locations of relays in our implementation of 𝜇ADNSCrypt.
From the results for cases (1)–(4), it is evident that the relaying
operation, as described in Section 5.3.2, excluding transport delays,
introduces negligible overhead. Notably, in case (1), it increased the
median or average RTT by less than 17 milliseconds even with three
relays. Therefore, we assert that, in 𝜇ODNS, we should primarily focus
on the selection and geographic placement of relays to mitigate the

13 Tor circuit could not be established at all when we explicitly fixed the
rea of middle and exit nodes to be only in Japan, or only in Singapore. We
hus simply limited the area to be near them.
12
degradation of RTTs. In this context, we observe that, besides consid-
ering the distance of the chosen relays from the user’s next-hop and
their number, the distance among these relays also has an impact on
the RTT, considering their randomized order. Similarly, the restriction
of Tor node locations is important for DNSCrypt over Tor and DoHoT
as suggested by the results for cases (5) and (6). Note that Tor-based
schemes, however, cannot control the number of Tor nodes on the path
to the target resolver, which is always fixed to three, and forces multi-
layered encryption that is unnecessary in our expected environment.
We expect these overheads might cause the observations on the 0.5th
and 0.1st percentiles for (6) described in the previous section.

Here we shall mention the effect of latency on user experiences on
the Internet. There exist several studies and reports in this context.
For example, Google, Fifty-Five, and Deloitte reported that in mobile
environments, the 100 ms improvement of loading speed of retail sites
results in an increase in average order value of 9.2% [37,38]. Also, a
100 ms improvement in loading time yields an increase in revenues of
0.6% for Bing [39], 0.7% for Zalando [40] and 1% for Amazon [39].
rom these studies, Callejo et al. suggested that migrating to resolvers
hat increase the RTT by 100 ms or more has a large negative impact

on the user experience [41, Section 8].

Based on the above observations of our experimental results and our
studies on user experiences, we assert that with an appropriate strategy
for selecting intermediate relays, the degradation of RTTs compared to
the no relay case can be kept to within 100 ms. Consequently, 𝜇ODNS
can consistently maintain a positive user experience. We can therefore
conclude that our implementation achieves reasonable performance.
On the other hand, the strategy to restrict the location of Tor nodes
is the most critical factor for user experiences in Tor-based schemes
as well as 𝜇ODNS. However, as previously mentioned, unlike 𝜇ODNS,
we cannot control the number of Tor nodes on the path, and the
unnecessary multi-layered cryptographic operations are not removable.
Therefore, we assert that 𝜇ODNS is better-designed in the context of
mitigating performance degradation compared to Tor-based schemes.

We will now discuss the selection of intermediate relays in 𝜇ODNS,
focusing on user experiences. We will begin by considering the optimal
locations for these relays. As previously mentioned, a user should
select relays after their next-hop from a set of neighboring nodes if
they seek improved performance. However, imposing restrictions on
the pool of potential subsequent relays could potentially compromise
privacy. This is because as follows. Recall that subsequent relays are
randomly chosen from this pool of candidate nodes, and the privacy
of 𝜇ODNS is guaranteed under the assumption that only a small part
of the pool may collude, as explained in Section 6.1. This implies that,
for enhanced privacy, the set of potential subsequent relay candidates
should be large. Therefore, as a straightforward operational guideline,
we suggest that, as long as the expected RTT is acceptable, the set of
subsequent relay candidates should be as extensive as possible. In a
practical strategy aimed at improving performance, it is advisable to
select relays located in the user’s country or neighboring countries and
ensure that their mutual distance is relatively close.

Next, we shall discuss the maximum number of subsequent relays
following the next-hop relay in 𝜇ODNS, which is a configurable option
as explained in Section 5.3.2. Obviously, the fewer relays, the better the
RTT performance. Consider a realistic scenario where only a small num-
ber, e.g., 1%, of entities collude with the target resolver. In such cases,
it is still unrealistic for colluding relays to trace the previous path of
each incoming query, as long as the path and its length are randomized,
although this becomes more challenging with a larger maximum path
length. Therefore, we suggest that the maximum number of subsequent
relays can be kept small. For instance, having at most two relays after
the next-hop could be practical, which is similar to Tor’s configuration
(two nodes after the entry node) but it is randomized from zero to two.

Additionally, having at most only one relay after the next-hop may be
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acceptable if the next-hop relay serves a number of queries received
from other relays, as mentioned in Section 4.

6.3. Expected deployment scenarios

The user anonymity of 𝜇ODNS relies on the expectation that there
exist numbers of participants, i.e., users and relays, composing the
network. Thus reality needs to consider how to deploy 𝜇ODNS on
the Internet, and hence here we discuss some deployment scenarios
of 𝜇ODNS, especially that of relays. We can expect several realistic
scenarios of deployment: For instance, users in an organization can
share one relay as their next-hop relay by deploying the relay at the
organization’s network edge, e.g., the gateway. In this case, it is also
made public for external users and used as a relay after their next-
hops. As another example, individual users in a mobile network would
instantiate their trusted next-hop relays at their edge-computing nodes.
On the other hand, much like Tor [13], some altruistic entities might
deploy relays that are transparent and trusted for certain groups of
users.

From another perspective of deployment of 𝜇ODNS, we should
consider how to handle the list of relays trusted to connect, which we
mentioned in Section 6.1.2. In particular, considerations are on how
we compose the list of trusted ones and how relays, resolvers, and
users fetch and trust such the list. We can take both centralized and
decentralized approaches to generate and host such a relay list: As a
centralized approach, the trusted list can be served at a single network
repository signed by a certain authority similar to the relay and re-
solver lists [21] of DNSCrypt community. An immediate approach in
a decentralized fashion is that addition, deletion, and modification of
relays in the list are done through Blockchain-like distributed ledger
technology. In our PoC implementations, we make our node list public
with the developer’s signature [34] at a repository, and namely, we
currently take the former approach.

7. Conclusion

This paper extended the concept of single-relay-based anonymized
DNS, i.e., ODoH [7–9] and ADNSCrypt [10,11], and introduced a new
concept of a multiple-relay-based DNS for user anonymity in DNS
queries, named the 𝜇ODNS (Mutualized Oblivious DNS). In 𝜇ODNS,
the user just sets his trusted relay as his next-hop, i.e., the first relay
in the path to the resolver. This next-hop relay conveys not only the
user’s queries but also queries sent from external relays. Addition-
ally, users randomly select subsequent relays, which may also serve
as trusted next-hops for other entities. Under this resource-sharing
paradigm, 𝜇ODNS ensures that the user’s identity remains concealed
from a target resolver, even if a certain subset of relays have colluded
with the target resolver. The concept of the next-hop in 𝜇ODNS can
be likened to the approach used for entry guard nodes in Tor [13],
although 𝜇ODNS is purpose-built and simplified to cater to the specific
requirements of DNS. Furthermore, we introduced PoC implementa-
tions based on ADNSCrypt and ODoH, referred to as 𝜇ADNSCrypt and
𝜇ODoH. We evaluated the performance of our implementation through
small-scale experiments in terms of RTTs. Our PoC implementation
demonstrated that it can minimize the performance degradation result-
ing from its privacy enhancements and that it can achieve performance
levels that maintain the positive user experiences seen in existing
single-relay-based schemes.

In the study on 𝜇ODNS, there are numerous avenues for future ex-
ploration. For instance, given that we have conducted only a small-scale
measurement of RTT in this paper, conducting a larger-scale measure-
ment by deploying multiple relays in geographically distributed regions
13

and involving many users should be considered as part of future work.
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